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a b s t r a c t

Three-dimensional, full core transport modeling with pin-resolved detail for reactor dynamic simulation
is important for some multi-physics reactor applications. However, it can be computationally intensive
due to the difficulty in maintaining accuracy while minimizing the number of time steps. A recently pro-
posed Transient Multi-Level (TML) methodology overcomes this difficulty by use multi-level transient
solvers to capture the physical phenomenal in different time domains and thus maximize the numerical
accuracy and computational efficiency. One major problemwith the TMLmethod is the negative flux/pre-
cursor number density generated using large time steps for the MOC solver, which is due to the Backward
Euler discretization scheme. In this paper, the stability issue of Backward Euler discretization is first
investigated using the Point Kinetics Equations (PKEs), and the predicted maximum allowed time step
for SPERT test 60 case is shown to be less than 10 ms. To overcome this difficulty, linear and exponential
transformations are investigated using the PKEs. The linear transformation is shown to increase the max-
imum time step by a factor of 2, and the exponential transformation is shown to increase the maximum
time step by a factor of 5, as well as provide unconditionally stability above a specified threshold. The two
sets of transformations are then applied to TML scheme in the MPACT code, and the numerical results
presented show good agreement for standard, linear transformed, and exponential transformed maxi-
mum time step between the PKEs model and the MPACT whole core transport solution for three different
cases, including a pin cell case, a 3D SPERT assembly case and a row of assemblies (‘‘striped assembly
case”) from the SPERT model. Finally, the successful whole transient execution of the stripe assembly case
shows the ability of the exponential transformation method to use 10 ms and 20 ms time steps, which all
failed using the standard method.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Three-dimensional, full core modeling with pin-resolved detail
has become the state of art computational simulation for nuclear
reactors. However, the computational intensiveness has become
challenging, especially for time-dependent transient analysis since
it is difficult to maintain accuracy when using large time steps to
minimize the number of transport solutions. As a result, several
innovative methods have been investigated to more efficiently
solve the time-dependent Boltzmann equation. One of the most
popular and widely used methods has been the quasi-static
method which originated with Henry (1958) and Henry and
Curlee (1958) and continued with Ott and Meneley (1969) who
proposed the Improved Quasi-Static (IQS) method in 1969. The

underlying premise of the Quasi-Static method is that the flux
can be factorized into an amplitude and a shape function since
the amplitude of the flux changes much more rapidly than the flux
shape. In the IQS method the shape function is solved by a modi-
fied time-dependent Boltzmann equation with a known amplitude
function, and the amplitude function is calculated using the PKEs
which are formed by integrating the time-dependent Boltzmann
equation with the known shape function. The shape and ampli-
tudes functions are iteratively solved with a shape constraint func-
tion until the convergence is satisfied. Recently, Ban et al. (2012)
adopted the nodal/PKEs based IQS method and innovated a new
fine/coarse mesh based IQS method by introducing a coarse mesh
wise rather than whole core amplitude function, which was named
Multigrid Amplitude Function (MAF) and was later implemented in
a transport based transient solver (Tsujita et al., 2013; Shaner et al.,
2013).

In addition to the IQS/MAF method, a new factorization
method called Predictor–Corrector Quasi-Static method (PCQM)
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(Kao and Henry, 1989) has recently become popular. Instead of
solving the shape and amplitude functions, the PCQM computes
the flux directly in the predictor step and the flux is corrected using
the amplitude function evaluated at the corrector step. Several
studies (Dulla et al., 2006, 2008; Caron et al., 2015) have applied
the PCQM to the nodal/PKEs scheme and have shown improved
accuracy and computational efficiency over traditional IQS method
by avoiding the iteration between shape and amplitude function in
the PCQM method.

Recently, a Transient Multi-Level (TML) method was proposed
by Zhu et al. (2015a) and the PCQM iteration scheme is used for
coupling of both the 3D-Transport/3D-CMFD level and the 3D-
CMFD/PKEs level. At each level, the original flux equation is solved
in the coarse predictor step and then is factorized as an amplitude
and a shape function in the corrector step, where the predicted
solution is corrected using multiple fine steps. In the first level
3D-Transort/3D-CMFD coupling, the angular and sub-pin flux
shape function in the Boltzmann transport equation are assumed
to vary slowly over time and the CMFD cell wise amplitude func-
tion is solved using multiple steps of the CMFD transient equation.
In the second level, the CMFD scalar flux calculated in the last step
is further corrected by a whole core amplitude function generated
by solution of the Point Kinetics Equations (PKEs). The numerical
results in Zhu et al. (2015a) show a considerable reduction of the
computational time can be achieved while maintaining a high level
of numerical accuracy.

However, one major challenge of the TML method is that the
flux/precursor number density generated by the transport step
can be negative when using large time steps in the Backward Euler
discretization. This imposes significant limits on the performance
of the TMLmethod and is the focus of the research described in this
paper. The stability issue is first investigated using PKEs and found
to be about 10 ms for typical reactivity insertion accidents (RIA),
such as the SPERT (Special Power Excursion Reactor Test) test 60
(Durgone, 1965). Two transformation methods are proposed in this
paper to overcome this problem, including both linear and expo-
nential transformation methods. The exponential transformation
is a legacy method (Reed and Hansen, 1970; Ferguson and
Hansen, 1973; Buckner and Stewart, 1976), which has successfully
accelerated the diffusion type transient problem.

The paper is organized as follows. Section 2 provides a detailed
description of the transient solvers developed in MPACT Team
(2013), including both the 3D-transport and the PKEs transient for-
mulations. In Section 3, the stability issue for Backward Euler dis-
cretization with large time step is investigated using PKEs models.
Section 4 is devoted to the two transient transformation methods
and their stability analysis using PKEs model. Section 5 then
describes the application of linear and exponential transformations
to the MPACT transport transient solver. Finally, Section 6 provides
numerical stability results using the PKEs and MPACT for the stan-
dard, linear and exponential transformation methods, using a pin
cell, a 3D SPERT (Cao et al., 2015) assembly and a row of SPERT
assemblies in a ‘‘stripe” model.

2. Transient methodology

The transient capability was recently added to the MPACT (Zhu
et al., 2015b) code and the detail formulation of the equations for
the transient solvers are presented in this section, including the
3D-transport transient equations and the PKEs.

2.1. 3D-transport transient equation

The 3D transport transient solver begins with the continuous
3D Boltzmann equation and the neutron precursor equations:

1
vðEÞ

@uðr;X;E;tÞ
@t ¼ �X � ruðr;X; E; tÞ � Rtðr; E; tÞuðr;X; E; tÞ

þ R1
0

R 4p
0 Rsðr;X �X0; E0 ! E; tÞuðr;X0; E0; tÞdX0dE0

þ 1
4p ðvpðr; E; tÞð1� bðr; tÞÞSFðr; tÞ þ vdðr; E; tÞSdðr; tÞÞ

ð1Þ

dCkðr; tÞ
dt

¼ bkðr; tÞSFðr; tÞ � kkðr; tÞCkðr; tÞ; k ¼ 1;2; :::;6 ð2Þ

where u and Ck are the angular flux and the delayed neutron pre-
cursor density, and SF and Sd are the total fission source and the
delayed neutron source which are defined as:
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In the above equations, the SF value is adjusted by the eigenvalue
determined in the steady-state calculation used to initialize the
transient.

For a given time step size Dtn at time step n, Eq. (1) can be
discretized using the Backward Euler method as:
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with Rn denoting all the right hand side terms of Eq. (1) at time
step n.

The Boltzmann equation is coupled to the precursor equations
by integrating Eq. (2) and the precursor equations with a second
order approximation for the fission source is written as in Eq. (6):
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Thus, the delayed neutron source can be expressed as:
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By inserting the delayed neutron source terms Eq. (8) into Eq.

(1) and expressing all the terms of Rn explicitly, and applying an
isotropic assumption to @u=@t; the final solution can be simplified
as:
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where the transient source is defined in Eq. (10) by using the corre-
lation vðr; EÞ ¼ vpðr; EÞð1� bðrÞÞ þ vdðr; EÞbðrÞ:
Sntrðr; EÞ ¼ Aðr; EÞ/n
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