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a b s t r a c t

The multigroup time-integro-differential equation of the neutron diffusion kinetics (IDE-NDK) was solved
numerically in 3D Cartesian geometry with the use of the basic-progressive polynomial approximation
(BPn) using the finite difference method (FDM) for the spatial discretization. Applications involving ramp
and instantaneous change of the thermal removal or fission macroscopic cross sections were used to
assess the accuracy of the BP2 algorithm. Two reactor models were used: a homogeneous and the 3D-
TWIGL reactor. The BP2 algorithm showed good accuracy when it is compared to the results of other
codes. Also the static neutron diffusion equation was solved numerically with the Lagrange interpolation
polynomial to assess the Keff accuracy of the FDM used for the steady state problem. In some applications
calculations were performed as function of the time integration step and mesh size. Extrapolations to
infinitesimal mesh size were performed in some cases.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The multigroup time-integro-differential equations of the neu-
tron diffusion kinetics (IDE-NDK) was solved numerically in 3D
Cartesian geometry using the basic-progressive polynomial
approximation (BPn) for the time discretization and the standard
finite difference method for the spatial discretization.

The BPn algorithm, presented in Quintero-Leyva (2009) for point
kinetics and implemented in Quintero-Leyva (2010, 2012) for solv-
ing the IDE-NDK in 1D and 2D Cartesian geometry, is extended in
this work to 3D. The objective of this manuscript is to make an
assessment of the BP2 algorithm (in the context of a finite
difference-spatial discretization) in 3D kinetics problems where
the requirements of memory and/or computing time could be very
challenging when it is compared to lower dimensional problems.
To address the CPU time requirements a customized (for the sparse
matrices in question) Gauss–Seidel method was implemented
which saved significant amount of CPU time when compared to
the non-customized Gauss–Seidel or to the Gauss elimination
method used in the works just mentioned.

Applications involving a ramp, and an instantaneous change of
the thermal removal or fission macroscopic cross sections were

analyzed. Two reactor models were used: a homogeneous reactor
and the 3D-TWIGL reactor. The BP2 algorithm showed good accu-
racy when compared to the results of other codes. In some applica-
tions the calculations were performed as function of the time
integration step and the mesh size and for some cases extrapola-
tions to infinitesimal mesh size were performed.

The static neutron diffusion equation was solved numerically
with the Lagrange interpolation polynomial to assess the Keff accu-
racy of the spatial finite difference method used for the steady
state condition.

The essence of the BPn algorithm as applied to the solution of
the 3D IDE-NDK equation is as follows:

(a) Calculate the steady state flux and Keff, and determine the
target degree of the polynomial approximation.

(b) Solve the IDE-NDK for the first interval of time using a linear
approximation (the unknown flux is expressed in term of the
steady state flux using a 1st degree polynomial interpolation
equation)

(c) Increase the degree of the polynomial approximation and
solve the IDE-NDK for the next time interval (e.g. for a 2nd
degree polynomial the unknown flux is expressed in terms
of the already calculated flux for the last two time-
intervals using the 2nd degree polynomial interpolation
equation).
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Repeat step c until the target polynomial degree and simulation
time is reached.

Note that, unlike in other kinetics methods, the BPn algorithm
does not need iterations intrinsic to the kinetics, it uses already cal-
culated values of the flux to extrapolate (using the integro-
differential equation) to the next time interval, it does not need
to solve special system of algebraic linear equations (SALE) inher-
ent to the kinetics method (the interpolation equation solutions
are well known, for higher than a 2nd degree polynomial, it can
easily be solved with Lagrange or Newton interpolation polynomial
that can be reduced to basic polynomial), it does not use any series
expansion, it does not time-integrate the prompt neutron equation,
and it does not need time-numerical integration (all time-integrals
are exact and simple).

2. The IDE-NDK

By time-integrating the equations of the delayed neutron pre-
cursor concentrations, the multi-group NDK equation without
external source (Aviles et al., 1991) can be written with the
following single multigroup integro-differential equation
(Quintero-Leyva, 2010):
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RR,g represents the neutron macroscopic removal cross section

(absorption and out scatters).
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Keff is the eigenvalue of the steady state problem (t = 0) which is a
constant for Eq. (1). Using this eigenvalue and the corresponding
steady state neutron flux as input, allows the direct use of the neu-
tron cross section of the steady state problem without an initial
adjustment of the NDK equation to assure critical state as the initial
condition.

The rest of the terms are well described in the literature. The
independent variables were dropped for convenience where
possible.

2.1. Determination of the initial condition and Keff

The initial condition (steady state flux distribution) and Keff is
obtained by solving the typical multigroup static neutron diffusion
equation (1st 4 terms of Eq. (1) with b = 0), which in 3D Cartesian
geometry is written as
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which is solved by integrating Eq. (2) between xi � Di
2 and xi þ Diþ1

2 in

the x-direction between yj � Dj

2 and yj þ Djþ1
2 in the y-direction, and

between zk � Dk
2 and zk þ Dkþ1

2 , applying continuity of current and
flux, using a finite difference (FDM) for the 1st derivative discretiza-
tion, and considering average values of the nuclear constants inside
each cell (cube). The following system of algebraic linear equations
(SALE) is obtained:
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where,
/gi,j,k and similar are the unknowns (nodal/point quantities,

they are not averages over the node).
i, j, k are indexes of the x, y, z coordinates respectively (i = 1, . . .,

I � 1; j = 1, . . ., J � 1; k = 1, . . ., K � 1).
I, J, K are the number of partitions in x, y, and z coordinates

respectively.
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