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a b s t r a c t

Optimal resource allocation is first found in defending possible targets against random terrorist attacks
subject to budget constraint. The mathematical model is a nonconvex optimization problem which can
be transformed into a convex problem by introducing new decision variables, so standard methods can
be used for its solution. Without budget constraint the simplified model can be solved by a very simple
algorithm which requires the solution of a single variable monotone equation.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Defending objectives, which can be the targets of terrorist
attacks, is one of the most important goals of homeland security.
The outcomes of the actions of the defender are uncertain because
they also depend on the random actions of the attacker. Game
theory is the most appropriate approach to model the interactions
between the attacker and the defender. Attacker–defender games
have been intensively studied in recent years. Some researchers
consider the players' payoffs as deterministic values and assume
that the defender seeks to minimize the damage, while the
attacker tries to maximize it [5,7]. However, the players' payoffs
are usually random due to the uncertainty in the game, and
therefore classic equilibrium approach has its limitations to find
the solutions under this situation. Risk analysis is often used
to capture the uncertainty resulting by the presence of random
variables in the players' payoff functions. A production and conflict
model is introduced and analyzed in [6] when two agents are
fighting for as large as possible shares of the total production,
which is determined by their contest success function. A two-
person conflict model is discussed in [22] when the agents can
select between converting resources into arms or into useful
production. The wining probabilities of the agents depend on
their armament levels and the obtained reward depends on the
amount of the useful production. The Nash equilibrium of
this two-person game is determined and its dependence on the
risk-taking attitudes of the agents is examined. A new contest

model is introduced in [4] which is an extension and general-
ization of the rent-seeking games where contest functions deter-
mine the winning probabilities and exponential utility function
are assumed. The existence and uniqueness of the equilibrium is
proved in the special case when every player has a constant degree
of absolute risk aversion. Comparative static results are proved
showing how the utility dissipation is affected by the risk-taking
attitude of the agents and the precise nature of the technology.
The central moments describe the nature of the distribution of a
random variable mathematically, and any distribution can be
characterized by the mean, the variance, the skewness, etc [19].
The first moment is usually considered as the payoffs of the
players in attacker–defender games. For instance, Bier et al. [2]
develop optimal strategies to allocate resources among possible
defensive investments based on the assumptions that the attacker
and the defender will maximize and minimize the expected
damage of an attack on the system, respectively. In order to find
best strategic defensive allocation against an unknown attacker,
Bier et al. [3] consider cases when the attacker seeks to maximize
the expected payoff from launching an attack and the defender
tries to minimize the expected loss of an attack. Hausken and
Zhuang [11,12] employ contest success function to describe the
probability of damage and compute the government's and terror-
ists' expected utilities in the attacker–defender game. Azaiez and
Bier [1] claim that the defender maximizes the expected cost of
the attack by considering an investment to strengthen the defense
capability of the object. Levitin [13] suggests optimal defense
strategy that presumes separation and protection of system ele-
ments based on the consideration that the attacker tries to
maximize the expected damage of an attack. Levitin and Hausken
[14] propose that the defender can enhance system reliability by
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either protecting a subset of the genuine system elements or
deploying separated redundant elements and false elements. The
agents' optimal strategies can be obtained from the expected
damage when the cumulative performance of the system elements
cannot meet a demand. Hausken and Levitin [8,9] consider the
interaction of the attacker and the defender as a two-person
simultaneous game where damages might occur to several ele-
ments of the system according to a binomial distribution, and the
possible damage is determined with a general contest function
including the intensity of the contest. Wang et al. [24] discuss the
attacker–defender problem and analyze how to allocate resources
to maximize the probability of core services availability by con-
sidering all kinds of components in the entire system. Since the
values of the core services can be estimated from the demand, the
objective function of the defender is equivalent to the expected
value of the available services under the attacks. Similarly, the
expected payoffs to the attacker and to the defender are also
employed by several scholars in conducting research on systems
defense and attack models [25,26,18,20]. To our best knowledge, in
all earlier studies expected value of the random objective is
considered and optimized [10].

Clearly, the characterization of a random variable becomes
more accurate if higher moments are also considered. However,
the complexity of the computation increases as well. Modeling
the uncertainties in this game should include the risk seeking
attitude of the players. As it is common in the economic
literature, uncertain outcomes are substituted with their cer-
tainty equivalents [21] including the first two central moments of
the random variables. The certainty equivalent of the payoff of
the defender is a linear combination of its expectation and
variance, where a risk attitude coefficient is assigned to the
variance.

In this paper it is assumed that there are several possible
targets which can be attacked, and the defender has the assess-
ment of the probability for each possible target to be attacked.
These probability values can be obtained by using actual data from
previous interactions with the attacker, or from information about
its capabilities or from other sources. The question is to find
optimal resource allocation strategy of the defender prior to the
attack. This paper offers a mathematical model and solution
algorithm for this problem before an actual attack occurs. Instead
of computing the amount of the damage by a contest function, we
determine the proportion of the maximum possible damage which
can be avoided by the protecting actions of the defender. For the
sake of mathematical simplicity we use a simple form of the
contest function, more general forms (such as used in [6]) includ-
ing intensity can be applied in a similar way. We also incorporate
risk by including the variance of the random payoff of the
defender into the objective function. After an attack occurs, the
defender responds to it, then newer attack occurs, the defender
responds again, and so on. A possible model and solution proce-
dure are offered for the resulting multistage stochastic game for
example, in our earlier work [16] and in the other papers
mentioned earlier.

In developing the mathematical model, we will first derive the
payoff function of the defender including the random elements,
and then its certainty equivalent will be determined based on its
expectation and variance. However, this payoff function is not
concave in general, so standard methodology cannot be used. By
introducing new decision variables both the objective function and
the budget constraint become concave, so the model is trans-
formed into a convex programming problem.

The rest of the paper is organized as follows. Section 2
introduces the mathematical model and the transformation into
a convex programming problem is given in Section 3. In the case of
unlimited or very high available budget an unconstrained

optimization problem is obtained, its special solution algorithm
is introduced in Section 4. An illustrative example is given in
Section 5. The last Section 6 concludes the paper with future
research directions.

2. The mathematical model

Suppose there are I independent possible targets, and let i be
the index of them (i¼1, 2,…, I). The intruder is assumed to attack
one target at each time. Combined attacks can be considered as
single attacks, since we can consider the combinations of targets
as new targets, and so combined attacks as separate attacks. Let ni
(i¼1, 2,…, I) be the effort of the attacker to attack target i and let pi
(i¼1, 2,…, I) be the probability of the actual attack. Let vi (i¼1, 2,
…, I) be the highest possible damage in object i if it is attacked and
the object is unprotected, and let mi (i¼1, 2,…, I) be the effort of
the defender to protect target i against the attack. In addition, let ci
(i¼1, 2,…, I) be the unit cost of this effort. It is assumed that the
defender is able to avoid mi=ðmiþniÞ proportion of the possible
highest damage if it is actually attacked. This simple formula can
be replaced by more sophisticated expressions, which would not
significantly modify the model. This expression is very similar to
the contest function concept from economics. So in this case the
defender's payoff is zi ¼ vi mi=ðmiþniÞ�cimi, which occurs with
probability pi. Here we assume that defending action is made only
in the case of an attack. If a possible target is not attacked, then the
defending resources remain idle there. The defender's payoff is a
discrete random variable with possible values zi and occurring
probabilities pi (i¼1, 2,…, I). Therefore the expectation and
variance of the defender's payoff z are as follows:

EðzÞ ¼ ∑
I

i ¼ 1
vi

mi

miþni
�cimi

� �
pi and

VarðzÞ ¼ ∑
I

i ¼ 1
vi

mi

miþni
�cimi

� �2

pi�ðEðuÞÞ2 ð1Þ

If r denotes the risk seeking attitude of the defender, then the
certainty equivalent ([21]) of its random payoff is given as

D¼ ∑
I

i¼1
vi

mi

miþni
�cimi

� �
pi�r ∑

I

i¼1
vi

mi

miþni
�cimi

� �2

piþr ∑
I

i¼1
vi

mi

miþni
�cimi

� �
pi

" #2
: ð2Þ

The value r¼0 refers to risk neutral attitude, r40 to risk
aversion and ro0 to risk seeking behavior. In this study, we
assume that rZ0, that is, the risk seeking behavior is excluded,
which is not realistic in our case, as it will be explained later. The
decision variables are mi (i¼1, 2,…, I) and the values of vi, ni, ci, pi
(i¼1, 2,…, I) and r are assumed to be known by the defender. Let B
denote the defender's available budget, then the budget constraint
can be formulated as

∑
I

i ¼ 1
mirB: ð3Þ

Hence our model is to maximize the objective function (2) subject
to the budget constraint (3). Notice that the objective function (2) can
be interpreted as using the weighting method in a multiobjective
programming problem, where the first objective is to maximize
expectation and the second objective is to minimize variance.

Notice that constraint (3) is linear, however the objective
function (2) is non-concave in general, so standard iteration
methods [15] cannot be used to find optimum. In the next section
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