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a b s t r a c t

A lot of research work has been proposed over the last two decades to evaluate the probability of failure
of a structure involving a very time-consuming mechanical model. Surrogate model approaches based on
Kriging, such as the Efficient Global Reliability Analysis (EGRA) or the Active learning and Kriging-based
Monte-Carlo Simulation (AK-MCS) methods, are very efficient and each has advantages of its own. EGRA
is well suited to evaluating small probabilities, as the surrogate can be used to classify any population.
AK-MCS is built in relation to a given population and requires no optimization program for the active
learning procedure to be performed. It is therefore easier to implement and more likely to spend
computational effort on areas with a significant probability content. When assessing system reliability,
analytical approaches and first-order approximation are widely used in the literature. However, in the
present paper we rather focus on sampling techniques and, considering the recent adaptation of the
EGRA method for systems, a strategy is presented to adapt the AK-MCS method for system reliability.
The AK-SYS method, “Active learning and Kriging-based SYStem reliability method”, is presented. Its high
efficiency and accuracy are illustrated via various examples.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The reliability analysis of a structure or a system involves the
evaluation of the probability that this system will fail, according to
one or multiple failure modes that are carefully identified with
specific methods which are outside the framework of this paper.
Each one of the p modes is defined by a model, associated with a
performance function gjð�Þ, j¼ 1;…; p, which delimits a failure
domain gjðXÞr0, where X is the vector of random parameters.
The probability of failure is defined as follows:

Pf ¼
Z
Df

f xðxÞ dx ð1Þ

where Df is the system failure domain and f xð�Þ is the probability
density function of the vector of random variables X. The integral
can be rearranged using the indicator function of the failure
domain 1Df

:

Pf ¼
Z
Rn
1Df

ðxÞf xðxÞ dx ð2Þ

1Df
ðxÞ ¼ 1 if xADf

0 otherwise

�
ð3Þ

In practical cases, no exact solution can be found for this integral,
which leads to the use of either analytical approaches or sampling
techniques.

Let us first consider component reliability problems where p¼1.
On the one hand analytical methods typically employ a first- or
second-order linearization (FORM or SORM, see [1,2]), of the limit
state gðXÞ ¼ 0 in the vicinity of the Most Probable failure Point
(MPP), found through the resolution of an optimization problem.
The computational cost of such methods is rather low, but the
accuracy of the result can also be low if the performance function is
strongly non-linear in the vicinity of the MPP, or if other areas away
from the identified MPP carry a significant probability content. On
the other hand, sampling techniques use large populations, which
are classified according to their sign on the performance function g.
In the case of Monte-Carlo simulations [1,2], these populations are
generated using the probability distribution associated with each
variable. The probability of failure is then estimated as the number
of realizations corresponding to failure with respect to the total
number of evaluations denoted by NMC:

Pf � P̂f ¼
1

NMC
∑
NMC

i ¼ 1
1Df

ðxðiÞÞ ð4Þ

Importance sampling [1,2] may be used in order to reduce the
size of the population required to reach a small coefficient of
variation on the estimation of Pf. It consists of centering the
sampled population around the MPP. Although they can be very
accurate, the main inconvenience with sampling techniques is
their need for a relatively large number of performance function
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evaluations. When these evaluations are time-consuming, which is
usual in most engineering applications, surrogate model-based
approaches such as polynomial response surfaces, polynomial
chaos expansion (PCE), Support Vector Machine (SVM), or Gaus-
sian process modeling, also known as Kriging, are a solution to
substantially reduce the numerical cost of the reliability assess-
ment. To this purpose, Kriging-based surrogate model approaches
such as the EGRA method [3] and the AK-MCS method [4] have
recently been introduced. Both are very accurate, efficient and
have advantages of their own. EGRA is well suited to evaluating
small probabilities, as the surrogate can be used to classify any
population. AK-MCS is built in relation with a given population
and requires no optimization program (on the whole design space)
for the active learning procedure to be performed. It is therefore
easier to implement and more likely to spend computational effort
on areas with a significant probability content.

For system reliability, where p41, both analytical approaches
and sampling techniques can be adapted. FORM requires the
calculation of multiple MPPs (for each limit state) and the related
reliability indices, which are used as parameters in the multi-
normal cumulative density function Φn (CDF) [5]. Various meth-
ods are available to evaluate Φn, but they can be expensive in
terms of computational effort. As in the component case (p¼1),
the FORM linearization approximation may generate large errors.
It is also possible to bound the system probability of failure using
bounding inequalities, which involve component probabilities [6].
However these bounds can be rather large in practical engineering
cases. Crude Monte-Carlo Sampling can be applied to carry out the
classification on each performance function, and the system
probability of failure can be calculated directly. However it
involves a large number of calls to these functions. In the context
of time-demanding performance functions, it is essential to reduce
the computational effort, if sampling techniques are to be used. An
adaptation of Kriging-based surrogate models for system reliabil-
ity is available for the EGRA method in [7] and proposed for AK-
MCS in the present paper. The purpose of this adaptation is to take
advantage of the benefits of AK-MCS for system reliability.

Section 2 provides a summary on existing techniques for compo-
nent reliability using Kriging-based surrogate models and discusses
their useful features. It describes the principles constituting the EGRA
and AK-MCS methods and puts them in perspective. Section 3
presents classic system reliability strategies to deal with multiple
limit states constituting the failure domain, as well as the EGRA
method for systems. Section 4 proposes an adaptation of the AK-MCS
method, named AK-SYS, making it applicable to calculating the
probability of failure of a system composed of simple series or
parallel arrangements of failure modes. An illustration example is
also presented. Section 5 illustrates the high efficiency and accuracy
of the AK-SYS method with literature examples. The different results
are compared with the EGRA method.

2. Kriging-based surrogate models for component reliability
analysis

Reliability evaluation using sampling techniques requires that
large populations be evaluated on the performance function,
which can be prohibitively expensive in terms of computational
effort. In order to classify random realizations according to their
sign on the performance function, one solution is to replace the
latter with a surrogate that can be evaluated inexpensively. The
need for an accurate and efficient surrogate model led the authors
in [3] to investigate Kriging. An active learning algorithm was
proposed, in which the initial Kriging model is successively
updated with new information from the true performance func-
tion, until it acquires the desired accuracy.

A Kriging predictor [8] is the realization of a stochastic field. It
is an exact interpolator on the points used to build it, and the
variance can be evaluated at each point of the simulation. Conse-
quently, in reliability analysis, where only the sign of the predic-
tion matters, the active learning objective is to add information in
areas with a high uncertainty on the sign of the performance
function. These particular features of Kriging are of great interest
in building efficient surrogate models. In contrast with other
surrogates approaches such as Polynomial Chaos Expension
(PCE), computational effort can be focused on the limit state.
Kriging-based models will be introduced in the following sections,
for the EGRA and AK-MCS methods.

2.1. The EGRA method

The Efficient Global Reliability Analysis (EGRA) method, intro-
duced in [3], is based on the following algorithm. First, a Kriging
model is build on an initial random design of experiments, carried
out on the true performance function. Then a learning function,
labeled the Expected Feasibility Function (EFF), is used to estimate
how likely the realization of the Kriging predictor at a particular
point is expected to be close to the limit state gðXÞ ¼ 0, given its
predicted value and variance. Point xn which maximizes the EFF is
the most “critical” point, i.e. with a substantial risk of a wrong
estimation on the sign of g. An optimization program is employed
to seek point xn within the entire design space. The latter will then
be evaluated using the true performance function and used to
update the Kriging model. When sufficient information has been
added to the model, a stopping criterion will be reached, guaran-
teeing the desired accuracy and ending the learning process. The
algorithm is summarized hereinafter.

1. Random generation of an initial Design of Experiments (DoE) of
size nDoE.

2. Computation of the Kriging model ĝ based on the nDoE design
sites ðxðiÞ; gðxðiÞÞÞ using the DACE toolbox for Kriging [9].

3. Identification, within the whole design space and through the
resolution of an optimization problem, of the maximum value
on the Expected Feasibility Function (EFF), which defines the
next best point xn to evaluate on g.

4. If the stopping criterion has not been reached, xn is evaluated
on g, the original DoE is updated with (xn; gðxnÞ) and the
algorithm goes back to step 2 for a new computation of the
Kriging model. Otherwise, the surrogate has acquired sufficient
accuracy.

Using the constructed meta-model, any sampled population
can be classified to obtain an estimation of the probability of
failure, which is an advantage of the EGRA method. However, to
construct this surrogate, each learning step involves the resolution
of an optimization problem and may waste computational effort
on areas with low densities of probability.

2.2. The AK-MCS method

To save on computing resources, Active learning and Kriging-
based Monte-Carlo Simulation (AK-MCS) [4] uses a Kriging surro-
gate model that is built specifically in accordance with a given
Monte-Carlo population. The objective of this construction is to
gain sufficient accuracy to classify this population, and not
necessarily to refine the fit between the true performance and
its surrogate over the whole design space. The active learning
process is based upon a learning function evaluated only on the
given and finite population, making it easier to implement without
any optimization program, but also more likely to focus on areas
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