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a b s t r a c t

This work presents three efficient higher order analytical nodal methods for the numerical solution of a
two-dimensional multigroup neutron diffusion equation in Cartesian geometry based on the use of the
successive polynomial-weighted transverse integrations technique to convert a one-group diffusion
equation to a system of coupled one-dimensional ordinary differential equations. These equations are
then solved analytically over each homogenized cell after adequate approximations of the resulting effec-
tive sources after transversal integrations. Coupling between the approximate transverse flux-moments
is achieved by imposing uniqueness constraint on their moments values. Adjacent elements are coupled
by enforcing continuity conditions on the flux and current moments at interfaces cells. The weighted cell-
balance equations and current-continuity conditions are then used to derive the discrete equations. These
methods are applied for solving numerically various 2D benchmark problems and theirs performances
discussed. Numerical results demonstrates more efficiency for the third higher order analytical nodal
method for which the alone unknowns considered are the transverse flux moments on the interfaces
of the homogenized elements.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

For the solution of the multigroup neutron diffusion equations
in Cartesian geometry, we propose three higher order analytical
nodal methods. Theses methods are all based on the use of
successive polynomial-weighted transverse integrations technic
(Ougouag and Rajic, 1988; Guessous and Akhmouch, 2002) to
convert the original one-group diffusion equation to a system of
coupled one dimensional ordinary differential equations. Theses
equations are solved analytically over each homogenized cell.
Coupling between the approximate transverse flux-moments in
the two directions x and y is achieved by imposing consistent
constraint relations on theirs moments values. Adjacent elements
are coupled by enforcing continuity conditions on the moments
of the flux and the current at the interfaces of cells. The cell-
balance equations and the current-continuity conditions are then
used to derive the discrete equations.

For the Partial Current Analytical Nodal Method of index k,
PCANM-k, the principal unknowns are the outgoing-partial currents
moments of order up to k at the faces of each homogeneous cell. The
equations are formulated as response-matrix equations and the
global system is solved naturally by a red–black Gauss–Seidel

iterativemethod: For k fixed, wewrite for each homogeneous nodal
element (or cell), the local response-matrix equations allowing to
calculate the outgoing partial currents moments at the interfaces
of nodal elements in terms of the incoming partial currentmoments
and source terms. As the incoming partial current moments are the
outgoing partial current moments of the adjacent nodes, the dis-
crete equations leads naturally to an inner-iterative procedure of
Gauss–Seidel type (Guessous and Akhmouch, 2002).

For the Flux Moments Analytical Nodal Method of index k,
FANM-k, the principal unknowns are the cell-centered flux
moments of order ði; jÞ; ði; j ¼ 0;1; . . . ; kÞ and the edge flux moments
of order up to k at the cell interfaces. An iterative procedure is
deduced naturally to solve the resulted linear system of equations
by de-coupling the set of cell-balance equations and the current
continuity systems: At each iteration, the cell-flux moment esti-
mates are substituted in the uncoupled, tridiagonal sets of x and
y-current equations which can be solved independently of each
other, so that the surface flux-moments can be computed. The
resulting surface values are then substituted into the cell-balance
equations to update the cell-flux moments. The formulation of
the FANM-k can be considered as an extension of the lowest order
Nodal Integration Method (NIM) (Azmy and Kirk, 1991) to higher
order allowing the same facilities for the parallelization of the
iterative solution procedure.
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The need of more precise results, suggest that the index k is
augmented and/or the mesh is refined. The number of unknowns
becomes then very large and computing cost more expensive
specially when extension to three dimensional problems is to be
performed. To surmount this drawback, we propose the Reduced
Fluxes Moments Analytical Nodal Methods of Higher Order,
RFANM-k, witch are simply a more satisfactory formulation of
FANM-k: The centered flux moments are eliminated from the final
discrete equations and the resulting linear system is only for the
interfaces unknowns. Consequently, the number of unknowns is
considerably diminished and the number of unknowns grow only

as OðkÞ instead Oðk2Þ. The reduced system of linear equations is
solved by an ADI-like iterative procedure. After convergence, the
centered cell parameters can be retrieved directly from the
weighted balance equations. The RFANM-k methods can be very
advantageous, specially for parallel implementation an three
dimensional calculations.

Theses three nodal methods developed in this work have the
capability to compute the in-node flux shapes by local expansion
and demonstrates that with judicious choose of unknowns and
adequate formulation of the resulting discrete equations, the ele-
vation of the index k P 1 is no more an obstacle for computation,
and can be very benefit for the solution of the steady state
multigroup neutron diffusion equation.

Numerical results obtained for the 2D-PWR benchmark prob-
lems demonstrates the high performance of the three higher order
analytical nodal methods, PCANM-k, FANM-k and RFANM-k and
discuss the choice between increasing the index k or refine the
mesh. Note that it would be interesting to compare the nodal
methods developed in this article with the high-order nodal meth-
ods such as those developed by Ougouag and Rajic (1988),
Altiparmakov and Tomašević (1990).

The plan of the paper is as follows. Some notations and prelim-
inary of the statement of the problem are given in section two. In
section three we give the procedures of discretization and iterative
solution for each of the three nodal methods. Finally, the section
four discusses numerical results and section five draws the
conclusion.

2. Preliminaries and notations

2.1. The multigroup neutron diffusion equation

The distribution of the neutron flux in a reactor can be obtained
by solving the multigroup neutron diffusion equations,

�r:ðDgðrÞ r/gðrÞÞþRt
gðrÞ /gðrÞ¼QgðrÞ ðr2X; g¼1; . . . ;GÞ ð1Þ

The source term Qg contains the fission and scattering
contributions:

QgðrÞ ¼
1
k
vg

XG
g0¼1

mR f
g0 ðrÞ/g0 ðrÞ þ

XG
g0–g

Rs
gg0 ðrÞ/g0 ðrÞ ð2Þ

The reactor domain X in 2-D cartesian geometry is a juxtaposi-
tion of large rectangular homogenized regions with piecewise con-
stant properties, corresponding to fuel assemblies. The notations in
Eqs. (1) and (2) are standard:

G = Total number of neutron energy groups.
k = Effective multiplication factor (or keff Þ.
vg = Total fission spectrum fraction in group g.

mR f
g = Macroscopic fission cross-section times the average

number of secondaries, in group g.
Rs

gg0 = Macroscopic transfer cross-section from group g0 to
group g.

Rt
g = Macroscopic removal cross-section in group g

Dg = Diffusion coefficient in group g.
/g = Neutron flux in group g.

These equations are to be solved subject to the following
homogeneous conditions at the reactor boundary @X:

aðrÞ/gðrÞ þ bðrÞr/g
��!ðrÞ: n!¼ 0 ðr 2 @X; g ¼ 1; . . . ;GÞ ð3Þ

where a and b are nonnegative real constants such that aþ b > 0.
By an adequate choice of the constants this condition covers
Dirichlet, Neumann and extrapolation boundary conditions and n!
is the outgoing unitary normal vector on @X. It is convenient to
rewrite Eqs. (1) and (2) into the following eigenvalue problem:

KU ¼ 1
k
FU ð4Þ

where U ¼ ð/1; . . . ;/GÞT ,
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and F ¼ v BT . Where v ¼ ðv1; . . . ;vGÞT and B ¼ ðmR f
1 ; . . . ; mR

f
GÞ

T
.

The eigenvalue Problem (4) is solved by the inverse power
method (Wachspress, 1996). Starting with a positive, but
otherwise arbitrary estimate Uð0Þ for the group fluxes, we generate
successive estimates UðnÞ and kðnÞ, n ¼ 1;2; . . ., according to the
following scheme:

KWðnÞ ¼ FUðn�1Þ

kðnÞ ¼ ð1;BTWðnÞÞ
ð1;BTUðn�1ÞÞ

UðnÞ ¼ 1
kðnÞ

WðnÞ

8>><>>: ð6Þ

In the absence of up-scattering ðRs
gg0 ¼ 0; for g0 > gÞ, at each step

of this power iteration procedure we then solve G uncoupled self-
adjoint elliptic boundary value problems of the form:

�r:D r/ðx; yÞ þ R /ðx; yÞ ¼ Qðx; yÞ ðx; yÞ 2 X ð7Þ
where Q is a known function. The unknown / is subject to the same
boundary condition Eq. (3).

2.2. Notations

The domain X is partitioned into M homogeneous rectangular
cells (or nodal elements) Xm ðm ¼ 1; . . . ;MÞ forming a rectangular
lattice. Let Xm ¼ ½�a; a� � ½�b; b�, and the Legendre polynomial
series piðxÞ; i 2 N defined on [�a, a] by piðxÞ ¼ PiðxaÞ; i 2 N where
PiðxÞ is the Legendre polynomial of degree i defined on ½�1;1�,
We have then the following orthogonality relations:Z a

�a
piðxÞpjðxÞdx ¼ 2a

2iþ 1
dij; i; j 2 N ð8Þ

where dij is the Kronecker symbol.
The equation Eq. (7) is multiplied successively by the Legendre

polynomial pjðyÞ ðj ¼ 0; . . . ; kÞ and integrated in the y-direction one
½�b; b�. We then obtain a set of ðkþ 1Þ one-dimensional second
order differential equation for the transverse flux moments
/ j

yðxÞ; ðj ¼ 0; . . . ; kÞ in the x-direction.
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