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a b s t r a c t

In this paper, we propose a framework to analyze Markov reward models, which are commonly used in
system performability analysis. The framework builds on a set of analytical tools developed for a class of
stochastic processes referred to as Stochastic Hybrid Systems (SHS). The state space of an SHS is
comprised of: (i) a discrete state that describes the possible configurations/modes that a system can
adopt, which includes the nominal (non-faulty) operational mode, but also those operational modes that
arise due to component faults, and (ii) a continuous state that describes the reward. Discrete state
transitions are stochastic, and governed by transition rates that are (in general) a function of time and the
value of the continuous state. The evolution of the continuous state is described by a stochastic
differential equation and reward measures are defined as functions of the continuous state. Additionally,
each transition is associated with a reset map that defines the mapping between the pre- and post-
transition values of the discrete and continuous states; these mappings enable the definition of impulses
and losses in the reward. The proposed SHS-based framework unifies the analysis of a variety of
previously studied reward models. We illustrate the application of the framework to performability
analysis via analytical and numerical examples.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Continuous-time Markov chains (CTMCs) are commonly used
for system reliability/availability modeling in many application
domains, including: computer systems [12,36,51], communication
networks [33,37], electronic circuits [6,52], power and energy
systems [1,2,10,34], and phased-mission systems [30,58]. A Mar-
kov reward model is defined by a CTMC, and a reward function
that maps each element of the Markov chain state space into a
real-valued quantity [41,50,55]. The appeal of Markov reward
models is that they provide a unified framework to define and
evaluate reliability/availability measures that capture system per-
formance measures of interest; in the literature, this is typically
termed performability analysis [4,38–40,48,50,57,23,47,31,22,35].
In this paper, we propose a framework that enables the formula-
tion of very general reward models, and unifies the analysis of a

variety of previously studied Markov reward models. The frame-
work foundations are a set of theoretical tools developed to
analyze a class of stochastic processes referred to as Stochastic
Hybrid Systems (SHSs) [26], which are a subset of the more
general class of stochastic processes known as Piecewise-
Deterministic Markov processes [11].

The state space of an SHS is comprised of a discrete state and a
continuous state; the pair formed by these is what we refer to as
the combined state of the SHS. The transitions of the discrete state
are stochastic, and the rates at which these transitions occur are
(in general) a function of time, and the value of the continuous
state. For each value that the discrete state takes, the evolution of
the continuous state is described by a stochastic differential
equation (SDE). The SDEs associated with each value that the
discrete state takes need not be the same; indeed, in most
applications they differ significantly. Additionally, each discrete-
state transition is associated with a reset map that defines how the
pre-transition discrete and continuous states map into the post-
transition discrete and continuous states. Within the context
of performability modeling, the set in which the discrete state
takes values describes the possible configurations/modes that a
system can adopt, which includes the nominal (non-faulty) opera-
tional mode, but also those operational modes that arise due to
faults (and repairs) in the components that comprise the system.
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The continuous state captures the evolution of some variables
associated with system performance, and as such, can be used to
define reward measures that capture a particular performance
measure of interest. Finally, the reset maps can define instanta-
neous gains and losses in reward measures that result from
discrete-state transitions associated with failures/repairs.

In order to fully characterize an SHS-based reward model, we
need to obtain the distribution of the combined state. However,
this is an intractable problem in general, due to the coupling
between the evolution of the discrete and continuous states and
the presence of reset maps. In fact, this problem can only be solved
in a few special cases. For instance, if we assume that the discrete
state does not depend on the continuous state, the evolution of the
former can be written as a CTMC; and as such, its probability
distribution is fully characterized by the solution of the Chapman–
Kolmogorov equations. However, unless we also assume that the
resets do not change the value of the continuous state, it is not
straightforward to obtain the continuous-state probability distri-
bution. Given the difficulty in obtaining the distribution of the
combined state, we settle for a method that allows the computa-
tion of any arbitrary number of their moments. To this end, we rely
on the extended generator of the SHS, which together with
Dynkin's formula can be used to obtain a differential equation
that describes the evolution of the expectation of any function of
the combined state, as long as such a function is in the domain of
the extended generator. Following the approach outlined in
[25,26], we show that under certain general assumptions, mono-
mial functions are always in the domain of the extended generator,
and thus, Dynkin's formula holds. Additionally, for SHS where the
reset maps, transition rates, and the vector fields defining the SDEs
are polynomial, the generator maps the set of monomial functions
to itself. Therefore, Dynkin's formula gives a closed set of ordinary
differential equations (ODEs) that describes the evolution of each
moment in terms of the values of the other moments. Since there
are infinitely many monomial functions, this formally produces an
infinite-dimensional system of ODEs in what is referred to in the
stochastic process literature as a closure problem.

The examples and case studies in this work demonstrate how
the proposed SHS-based framework applies to reward models
where the rate at which the reward grows is: (i) constant—this
case is referred as the rate reward model [49], (ii) governed by a
first-order linear differential equation—we refer to this case as a
first-order reward model, and (iii) governed by a linear SDE—this
case is referred as the second-order reward model [3,28].
As demonstrated in Section 3.1, the SHS-based framework can
specify even more general reward models, but we restrict our
attention to the above cases as they have been previously studied
in the literature; this allows us to validate and verify our results.
We will show that the structure of the standard reward models
described above is such that there are finite-dimensional trunca-
tions of the ODEs governing the moment evolution that are closed,
i.e., there are finite subsets of moments such that the evolution of
any member of this subset is a function only of the other members
of this subset. In other words, these conventional reward models
do not lead to a closure problem, and we only have to solve a
finite-dimensional ODE to determine the evolution of the reward
moments.

Several numerical methods have been proposed to compute the
reward distributions for rate reward models (see, e.g.,
[20,45,48,42,53,59,8] and the references therein). However, for
more general reward models, e.g., second-order reward models
with impulses and/or losses in the accumulated reward, it is very
difficult to obtain explicit, closed-form, analytical solutions for the
partial differential equations (PDEs) that describe the evolution of
the reward distributions [27]. In practice, in order to analyze such
reward models, numerical methods are utilized to integrate the

PDEs governing the evolution of the accumulated reward prob-
ability density function [13,27] (see also [14,54] for discussions on
specific reward modeling and analysis software packages). It is
worth noting that systems with deterministic flows and random
jumps in the state have been widely studied in the nuclear
engineering community (in light of the description above, these
are a type of SHS). For instance, Chapman–Kolmogorov equations
with appropriate Markovian assumptions are utilized to derive the
PDEs that govern the continuous states in [16,15,17]. However,
even in this body of work, it has been acknowledged that closed-
form analytical solutions to the PDEs can be derived only for
simple models [15].

An alternative to numerical integration for characterizing the
distribution of the reward is to compute its moments, which then
can be used, e.g., to compute bounds on the probabilities of
different events of interest using probability inequalities. In this
regard, a number of methods have been proposed in the literature
for computing moments in reward models. For example, techni-
ques based on the Laplace transform of the accumulated-reward
distribution are proposed in [21,28,29,49]. In [41], the first
moment of the accumulated reward in these models is computed
following a method based on the frequency of transitions in the
underlying Markov chain. A numerical procedure based on the
uniformization method is proposed to compute the moments of
the accumulated reward in [9]. Methods from calculus of varia-
tions are used to derive differential equations that provide
moments of rewards for rate-reward models in [46]. In the same
vein of these earlier works, the SHS-based framework proposed in
this paper provides a method to compute any desired number of
reward moments. The advantages of the SHS approach are two-
fold: (i) it provides a unified framework to describe and analyze a
wide variety of reward models (even beyond the rate-, first-, and
second-order reward models that our case studies focus on), and
(ii) the method is computationally efficient as it involves solving a
linear ODE, for which there are very efficient numerical integration
methods.

The remainder of this paper is organized as follows. In Section 2,
we provide a brief overview of Markov availability/reliability and
reward models. In Section 3, we describe fundamental notions of
SHS, and demonstrate how the Markov reward models studied in
this work are a type of SHS. Case studies are discussed in Section 4,
while Section 5 illustrates the moment closure problem in SHS.
Concluding remarks and directions for future work are described in
Section 6.

2. Preliminaries

In this section, we provide a brief overview of Markov avail-
ability and reliability models, as well as Markov reward models;
while in the process, we introduce some relevant notation and
terminology used throughout the paper. For a detailed account on
these topics, interested readers are referred to [56,50].

2.1. Markov availability and reliability models

Let Q(t) denote a stochastic process taking values in a finite set
M; the elements in this set index the system operational modes,
including the nominal (non-faulty) mode and the modes that arise
due to faults (and repairs) in the components comprising the
system. The stochastic process Q(t) is called a Continuous-Time
Markov Chain (CTMC) if it satisfies the Markov property, which is
to say that

PrfQ ðtrÞ ¼ ijQ ðtr�1Þ ¼ jr�1;…;Q ðt1Þ ¼ j1g ¼ PrfQ ðtrÞ ¼ ijQ ðtr�1Þ ¼ jr�1g;
ð1Þ
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