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a b s t r a c t

To simulate the nuclide evolution process in a nuclear reactor core, the Transmutation Trajectory Analysis
(TTA) method solves the depletion equations by decomposing the depletion system into a number of
linear chains and then solving each one analytically. In this paper, two improvements are proposed for
TTA to obtain better efficiency. Firstly, the pseudo node evaluation for linear chain cutoff check has been
removed. Instead, a time-averaged nuclide number density is employed as the chain termination criteria,
which in theory can improve the computational efficiency by a factor of two. Secondly, a new recursive
formula has been derived to replace the legacy direct solution formula for solving the linear chains.
Numerical tests have been carried out based on a typical PWR fuel cycle to demonstrate that these
improvements enable the TTA method to solve decay problems efficiently and accurately.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Nuclear energy release is accompanied by nuclides depletion
process. The variety of nuclides vary in their toxicities, decay
properties and microscopic cross sections. Therefore, predicting
the time evolution of nuclide inventories is of vital importance in
nuclear applications. Actually, the depletion process is coupled
together with both neutronics and thermal–hydraulics processes.
Within a small enough time step, however, these three processes
can be treated independently. Although the depletion process is
quite complicated, there are governing equations called depletion
equations describing the variation rate of nuclide number density
which equal the difference of rate of production and consumption.
These equations can be written as a set of first order ordinary dif-
ferential equations assuming constant microscopic reaction rates
(Stamm’ler and Abbate, 1983) for each depletion region during
small time steps. The coefficient matrix of the depletion equations,
or depletion matrix, describes the nuclide transformation relations.
For example, each of the diagonal entries stands for the disappear-
ance of the corresponding nuclide, while each of the off-diagonal
entries represents the contribution between two different nuclides.

There are two major types of methods which can be used for
solving the depletion equations with constant coefficients:
matrix exponential methods and linear chain methods. In general,

computation of matrix exponential in itself constitutes a rich field
of study (Moler and Van Loan, 2003). Several methods have been
introduced to solving depletion equations, such as the Taylor
expansion and truncation method with secular equilibrium
assumed for short-lived nuclides (Croff, 1980; Hermann and
Westfall, 1998), and Chebyshev rational approximation method
(CRAM) (Pusa and Leppänen, 2010; Pusa, 2011). Taylor expansion
and truncation method is based on the definition of the matrix
exponential in Taylor series form. CRAM is related to the rational
approximation of exponential function (Trefethen et al., 2006).
Other than these matrix approaches, linear chain methods offer a
direct solution method. With little computational overhead, this
approach explicitly models nuclide chains and enumerates all
important ones. A more recent general analytical solution by Cet-
nar, referred to as Transmutation Trajectory Analysis method
(TTA) (Cetnar, 2006) has remedied the identical vanishing coeffi-
cients issue.When this solution is used, the only approximation left
is the termination of linear chains of low importance. The term lin-
ear chain here refers to a simple depletion process in which each
nuclide has at most only one predecessor and at most only one
daughter nuclide. Each of these linear chains is governed by analyt-
ically solvable bi-diagonal depletion equations, or bi-diagonal
Bateman equations. The solution of the original depletion equations
can be obtained as a superposition of those analytical solutions.

The depletion problems could be classified into two different
types, namely the decay problems and the burnup problems
(Isotalo, 2013), based on the absence or presence of neutron flux.

http://dx.doi.org/10.1016/j.anucene.2015.10.013
0306-4549/� 2015 Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Tel.: +86 029 82663285.
E-mail address: yunzhao@mail.xjtu.edu.cn (Y. Li).

Annals of Nuclear Energy 87 (2016) 637–647

Contents lists available at ScienceDirect

Annals of Nuclear Energy

journal homepage: www.elsevier .com/locate /anucene

http://crossmark.crossref.org/dialog/?doi=10.1016/j.anucene.2015.10.013&domain=pdf
http://dx.doi.org/10.1016/j.anucene.2015.10.013
mailto:yunzhao@mail.xjtu.edu.cn
http://dx.doi.org/10.1016/j.anucene.2015.10.013
http://www.sciencedirect.com/science/journal/03064549
http://www.elsevier.com/locate/anucene


For a pure decay system, the disassembly of the directed graph
representing the depletion matrix called linearization would be
exact since a finite number of linear chains with finite length will
be equal to the original depletion equations according to the super-
position principal and the absence of closed transformation cycles.
The latter condition is insured, since a nuclide could not go through
a series of energy emitting decay processes and return to itself pre-
cisely with an unchanged mass. However, for a burnup system
with neutron-induced nuclear reactions involved, there might be
closed transformation cycles, thus a finite or even infinite number
of linear chains with infinite length are necessary for maintaining
the equivalence between the original depletion equations and the
series of linear chains. Practically, not all of these linear chains
are important enough to be considered however, because the num-
ber of nuclides transferred through the linear chain decreases
rapidly along the chain. Consequently, a cutoff check is carried
out to determine the effective end of each linear chain growing
process. Considering that the determination of linear chain solu-
tions contributes most to the computational cost, the efficiency
could be improved by reducing the number and the length of cal-
culated linear chains or finding more efficient analytic formulas to
resolve the nuclide number densities for each of these linear
chains. Such an efficiency improvement would accumulate consid-
erable saving on computational effort in applications that demand
large numbers of depletion calculations.

In this paper, two improvements concerning efficiency of TTA
are proposed. Firstly, a time-averaged nuclide number density is
employed to simplify the linear chain cutoff check, which is usually
done by calculating the number density of a stable node appended
at the end of the chain. In this paper, this artificial stable node is
referred to as a pseudo node. Secondly, in terms of the analytic
solution, a recursive formula, which is mathematically equivalent
with the legacy direct formula, is derived and implemented to
reduce computational effort spent on solving linear chains. Numer-
ical tests have been carried out based on a typical PWR fuel cycle. It
has been demonstrated that these improvements could make the
TTA method run faster by a factor of about 8 while maintaining
the same computational accuracy. While it has been shown that
the burnup problems could be solved elegantly by CRAM (Pusa
and Leppänen, 2010; Pusa, 2011; Isotalo and Aarnio, 2011), the
TTA method has better performance for solving decay problems,
and could be viewed as a complement with respect to CRAM.

The paper is organized as the following. Section 2 derives the
theory and formulas of the two improvements in detail. Numerical
results and discussions of three selected test cases based on a PWR
fuel cycle are given in Section 3. Finally, conclusions are drawn in
Section 4.

2. Theoretical model

The TTA method finds the final solution by summing up contri-
butions from all linear chains. The basic building element of linear
chain is called node, and each root node corresponds to a nuclide
with non-zero initial number density. The level of a node is defined
as its distance from the root node. These concepts are illustrated in
Fig. 1, in which only nuclide a is assigned a non-zero initial number
density for the sake of simplicity. The linear chain searching pro-
cess is in a form of three levels of iterations. The outermost itera-
tion selects the nuclides that have non-zero initial nuclide
number densities as root nodes. The second level iteration is com-
posed of two innermost iterations: one for growing the linear chain
along the transfer relationships until being terminated; and the
other for identifying the restart node, which is defined as the node
that has unexplored successors and is closest to the last node.
Between the two innermost iterations, the nodes after restart node
of the linear chain are taken into account to the contributions of

the solution, since they belong to the newly explored transmuta-
tion path. Termination of linear chain in the growing process hap-
pens when the last node has no successors or the importance of the
linear chain falls below a certain value (cutoff criterion). The sec-
ond level iteration ends when the restart node cannot be found.
The pseudo code of the linear chain searching process is provided
in Appendix A under Algorithm 1.

The governing equations for each linear chain are the
bi-diagonal Bateman equations:

dN1ðtÞ
dt

¼ �k1N1ðtÞ ð1aÞ
dNiþ1ðtÞ

dt
¼ kiþ1;iNiðtÞ � kiþ1Niþ1ðtÞ ð1 6 i < nÞ ð1bÞ

where NiðtÞ refers to the number density (cm�3) of the ith node, ki is
the vanishing coefficient of ith node nuclide (s�1), while kiþ1;i stands
for the transfer coefficient from the ith node nuclide to (i + 1)th
node nuclide, defined as:

ki ¼ kdecayi þ ra;i/

kiþ1;i ¼ biþ1;ik
decay
i þ riþ1;i/

ð2Þ

kdecayi is the decay constant, ra;i is the single group microscopic
absorption cross section, biþ1;i and riþ1;i are the branching ratio
and the single group microscopic cross section that produces
(i + 1)th node nuclide respectively, / is the neutron flux.

2.1. Improvement on the cutoff check

Toavoid linear chainsof infinite length, orunnecessary linear chain
nodes, a criterion has to be employed to stop the searching process for
each linear chain. The essential measurement is the linear chain pas-
sage (Cetnar, 2006; Isotalo and Aarnio, 2011), which is defined as the
number density that goes through the last transfer relation:

Pn ¼
Z tf

0
knþ1;n � NnðtÞdt ð3Þ

where the linear chain is cut between the nth and the (n + 1)th
nodes, and knþ1;n is the corresponding transfer coefficient. It offers
an estimate of the remaining number densities that will be
neglected. Thus, the linear chain should be terminated once Pn falls
below the cutoff criterion determined by:

ecutoff ¼ cutoff � Ntotalð0Þ ð4Þ
where Ntotalð0Þ represents the initial total nuclide number density.

The independent pseudo node approach, which is implemented
initially, appends a pseudo node with kpseudo ¼ 0:0 and
kpseudo;n ¼ 1:0 after the nth node of the linear chain. Then, it can
be shown that Pn equals knþ1;nNpseudoðtf Þ. Since most nodes are
not stable, and require pseudo node calculations, the total comput-
ing effort is nearly doubled.

An alternative approach is to determine linear chain passage
from a time-averaged nuclide number density:

NnðtÞ ¼ 1
t

Z t

0
NnðsÞds ð5Þ

As will be discussed latter, NnðtÞ could be expanded as the sum of
terms taking the form tke�kj t . The integrals of these terms could be
pre-calculated and stored for all possible combinations of kj and k
up to a very limited number of values (3 is enough in most cases).
Compared to the independent pseudo node approach, the computa-
tion solving the pseudo node is saved, and additional integration is
required. The time saving effect dominates in practice, because the
integration is merely based on weighted summation of pre-
calculated values, therefore the computational time is approximately
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