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a b s t r a c t

Sensor fault detection and isolation (FDI) is an important element in modern nuclear power plant (NPP)
diagnostic systems. In this respect, sensor FDI of generation II and III water-cooled nuclear energy sys-
tems has become an active research topic to continually improve levels of reliability, safety, and opera-
tion. However, evolutionary advances in reactor and component technology together with different
energy conversion methodologies support the investigation of alternative approaches to sensor FDI.
Within this context, the basic aim of this two part series is to propose, implement and evaluate an inte-
grated approach for sensor FDI and signal reconstruction in generation IV nuclear high temperature
gas-cooled reactors (HTGRs). In part I of this two part series, the methodology and theoretical background
of the integrated sensor FDI and signal reconstruction approach are given. This approach combines tech-
niques such as non-temporal parity space analysis (PSA), principal component analysis (PCA), sensor
fusion and fuzzy decision systems to form a more powerful sensor FDI methodology that exploits the
strengths of the individual techniques. An illustrative example of the PCA algorithm is given making
use of actual data retrieved from a pilot plant called the pebble bed micro model (PBMM). This is a pro-
totype gas turbine power plant based on the first design configuration of the pebble bed modular reactor
(PBMR). In part II, the described integrated sensor fault detection approach will be evaluated by means of
two case studies. In the first case study the approach will be evaluated on real PBMM data and in the sec-
ond case study the approach will be evaluated on a highly detailed Flownex� model of the new genera-
tion PBMR.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Economic constraints and reliability concerns are driving the
electric power industry to seek improved methods for monitoring,
controlling and sensor diagnosing systems in order to optimise
plant performance, reduce unscheduled maintenance and establish
long-term management of critical assets. Improvement of safety
and operational levels in modern nuclear power plants (NPPs)
are crucial, necessitating optimal health monitoring (Patton et al.,
2000). With the assistance of early fault detection and proper fault
classification, process and component malfunctions can be identi-
fied at an early stage, to reduce the risk of sudden failure as well as
facilitating timely maintenance or repair (du Rand et al., 2009).

With the increased complexity of NPPs and the increased num-
ber of sensors installed in power plants, failure to identify the
source of the indication of an ‘‘abnormal state’’ and the inability

to take appropriate corrective action could result in expensive
and unnecessary system shutdowns, or accidents that endanger
both the system and personnel (Patton et al., 2000). It is very
important for a monitoring and diagnostic system to distinguish
between the case of a sensor failure or a system fault (Alag et al.,
2001). Sensor malfunctions can be classified into two types of fault
classes: abrupt sensor faults and sensor degradation. Abrupt sensor
faults result in either complete failure or erroneous readings from
the sensor, whilst sensor degradation changes the performance of
the sensor. During the lifespan of any engineering system, faults
are unavoidable factors that degrade system performance.

Advanced sensor FDI techniques have been studied since the
1970s (Hwang et al., 2010; Patton, 2000) to improve chemical
and power plant safety management and supervision systems.
Yong-kuo et al. (2013) developed a distributed fault diagnosis sys-
tem based on a fuzzy neural network (FNN) architecture for a NPP.
The system combines local diagnosis and multi-source information
fusion technology to allow for an advanced type of global fault
diagnosis. Condition monitoring of a reactor core was also
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conducted by West et al. (2014) and relies on models derived from
laboratory experiments combined with current operation plant
data to infer the underlying health status of a nuclear reactor core.
Probabilistic approaches have also been followed towards sensor
fault diagnosis. These techniques are normally based on Bayesian
belief networks (BBNs). Sharifi and Langari (2013) proposed a
method that is different compared to these techniques in the sense
that a probabilistic model is directly extracted from a parity equa-
tion. The relevant parity equation can be found using a model of
the system or through principal component analysis (PCA). In the
same probabilistic paradigm, (Liu et al., 2013) introduced a modi-
fied version of the probabilistic support vector regression (PSVR)
method. This approach is proposed for the prediction of parame-
ters of NNP components under fault conditions. It includes prepro-
cessing, data reconstruction, model selection, and PSVR for
estimation of the prediction interval and conditional predictive
distribution of the target of interest. A combination of probabilistic
and artificial intelligence methods for sensor fault detection and
classification was also implemented by Nasimi and Gabbar
(2014), where a fault semantic network (FSN) methodology is pro-
posed for fault classification, identification and fault detection.
Sensor readings are obtained and processed using PCA and
weighted PCA methods for dimensionality reduction. A neural net-
work is used for sensor fault identification and prediction. Even
though research shows that these diagnostic systems are essential
in prolonging the lifespan of the plant, only a few real systems are
actually installed in operational units (Gertler, 1998; Johnson,
1989).

Sensor FDI of nonlinear systems is particularly difficult from a
theoretical point of view (Zakharov et al., 2013). In addition,
obtaining a sufficiently accurate analytical model for complex

processes like those used in NPPs, could take years. Traditionally,
two sensor FDI schemes are used: (1) limit value checking and
(2) signal processing. Limit value checking techniques have been
proven to perform well if the plant operates close to its’ steady
state. However, implementing a diagnostic system that only per-
forms well during steady state conditions is not desirable. The dif-
ficulty with the approach to signal processing fault diagnosis, is
distinguishing between changes in the signal properties due to
faults. More recent approaches to sensor fault diagnosis can be
found in the field of computational intelligence (Wang, 2003).
These methods are however data-driven and dependent on the
quality and amount of data used for model development.
Acquiring such data for the entire operating range in the next gen-
eration NPPs are proven to be very difficult due to time and finan-
cial constraints. All these abovementioned factors necessitate the
development of a new approach to NPP sensor fault diagnosis.
The goal is therefore to realise an integrated sensor fault diagnostic
methodology that is simplistic, reliable and most importantly,
accurate for the whole spectrum of states in the NPP.

The methodology described in this paper builds on the ideas
and methods that have been advanced by many investigators.
This paper’s contribution lies in the integration of these ideas to
form a consistent comprehensive methodology. Previous work on
sensor validation includes the parity space approach, filtering tech-
niques, and probability ratio tests that have been used to evaluate
sensor values by comparing them with redundant measurement
values. These techniques can be read in detail in
Venkatasubramanian et al. (2003) and Yan and Goebel (2003).
Lee (1994) developed a technique that systematically explores
the redundancies embedded in a system where numerous sensors
are installed at various locations to evaluate the sensor values. This

Nomenclature

Symbols (lower case)
c constant value
e additive error vector
f magnitude of the fault
m vector of redundant measurement
p parity vector
q number of redundant measurements
r residual vector
x variable vector
x⁄ sample vector for normal operation

Symbols (upper case)
E(�) expected value
H measurement matrix
P parity matrix
T scores matrix
V projection matrix
X normalised data matrix
Sp principal component subspace
Sr residual subspace

Subscripts
i sensor channel
j sensor signal

Greek letters
nq threshold
ki eigenvalue

R correlation matrix
d2 confidence limit for SPE
ei fault vector
r standard deviation
rs maximum process change
c skewness

Abbreviations
AANN auto-associative neural networks
BBN Bayesian belief network
CM common mode
FDI fault detection and isolation
FNN fuzzy neural network
FSN fault semantic network
HTGR high temperature gas-cooled reactor
ICA independent component analysis
ICMP instrumentation and calibration monitoring plan
MPS main power system
MSE mean squared error
MSET multivariate state estimation
NPP nuclear power plant
NLPLS non-linear partial least squares
NTPS non-temporal parity space
PBMR pebble bed modular reactor
PBMM pebble bed micro model
PCA principal component analysis
PSVR probabilistic support vector regression
SPE square prediction error
VRE variance of the reconstruction error
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