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a b s t r a c t

An analysis of the behaviour of the neutron spectrum in transient condition, based on an extension of the
inhour equation to the energy dimension, is presented. This approach enables to describe the spectrum
evolution in time as a combination of eigenstates associated to the roots of the inhour equation. The fine
description of the neutron distribution in energy during the transient is exploited to evaluate homoge-
nization errors committed by few-energy-group models.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The kinetics of the infinite homogeneous reactor has been
extensively explored and analytical solutions have been provided
for the mono energetic neutrons (Keepin, 1965; Lamarsh, 1966;
Akcasu et al., 1971; Ott and Neuhold, 1985). Analytical solutions
are useful to setup benchmarks (Picca et al., 2013; Ganapol,
2013) validating neutronic transient codes. Analytical solutions
are also useful to understand the physics of the neutron kinetics.
However the analytical approach has been neglected for the neu-
tron spectrum. One of the rare analytical approaches to the solu-
tion of the kinetic problem in multi-group theory was proposed
by Schwalm (1965) to estimate the neutron spectrum in a pulsed
experiment. The present work aims to give an analytical solution
to the neutron spectrum kinetics by extending the inhour equation
to the energy dimension. The evolution of the spectrum in the time
is seen as a combination of eigenstates of the inhour equation.

2. Analysis of the spectrum in transient conditions

2.1. The spectrum in transient conditions

We write the kinetic neutron balance equation in infinite med-
ium condition with an external source of intensity s and spectrum
Xs for the multigroup formulation (NG energy groups) as:

V�1 � dU
dt
¼ 1� btotð ÞF �UXp � A �Uþ sXs þ

XNd

i¼1

kiCiXd;i ð1aÞ

and for the Nd precursors of delayed neutrons (i = 1,. . ., Nd):

dCi

dt
¼ biF �U� kiCi; ð1bÞ

with

btot ¼
XNd

i¼1

bi: ð2Þ

The following initial conditions are associated:

Uð0Þ ¼ U0; ð3aÞ

Cið0Þ ¼ C0;i: ð3bÞ

Operator A is the absorption and scattering matrix, Xp and Xd;n

(n = 1,. . .,Nd) are the emission spectrum vectors of the prompt and
delayed neutrons respectively, F is the fission neutron emission vec-
tor and V�1 is the diagonal matrix having the inverse of the neutron
velocity v i (i = 1,. . .,NG) as elements:

A ¼matrix �Ri;j þ di;j Ra;i þ
XNG

k¼1

Rk;i

 !" #
;

Xp ¼ vector vp;i

h i
;

Xd;n ¼ vector vd;n;i

h i
;

F ¼ vector mRf ;i
� �

;

V�1 ¼matrix di;j=v i
� �

;

U ¼ vector ui½ �; i; j ¼ 1; . . . ;NGð Þ:

ð4Þ
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The convention to express with Ri;j the neutrons coming from group
j to group i has been adopted. Symbol di;j is the Kronecker delta.

Assuming the medium properties do not change after t = 0, a
possible solution can be expressed as a combination of
exponentials:

UðtÞ ¼
XNd

j¼0

ajuje
xj t ; ð5aÞ

CiðtÞ ¼
XNd

j¼0

ci;jexj t; ð5bÞ

which implies that the initial conditions can be expressed as:

XNd

j¼0

ajuj ¼ U0; ð6aÞ

XNd

j¼0

ci;j ¼ C0;i; ð6bÞ

provided that the initial spectrum can be decomposed on the uj

basis functions. In Section 2.4 the conditions in which Eq. (5) is
complete will be discussed.

2.2. The inhour equation for the neutron spectrum

Substituting Eqs. (5a) and (5b) into Eq. (1b) we obtain:

XNd

j¼0

etxjxjci;j ¼ bi

XNd

j¼0

etxj F �ujaj � ki

XNd

j¼0

etxj ci;j: ð7Þ

Since this equation must hold for any time t, we have one equation
for each exponential

xjci;j ¼ F �ujajbi � kici;j; ð8Þ

which solved for ci;j gives

ci;j ¼
F �ujajbi

ki þxj
: ð9Þ

Substituting Eqs. (5a), (5b) and (9) into Eq. (1a) we obtain, in
absence of external source:

V�1 �
XNd

j¼0

etxj ajujxj ¼ �
XNd

j¼0

etxj A �ujaj þ Xp 1� btotð Þ
XNd

j¼0

etxj F �ujaj

þ
XNd

i¼1

kiXd;i

XNd

j¼0

etxj F �ujajbi

ki þxj
: ð10Þ

Again, the requirement to satisfy this equation for any time t leads
to

Aþ V�1xj

� �
�uj ¼ F �uj Xp 1� btotð Þ þ

XNd

i¼1

bikiXd;i

ki þxj

 !
: ð11Þ

This is the equation which provides the eigenstates of the kinetic
problem. Eq. (11) can be simplified after some manipulation. Let
us define the adjoint spectrum as solution of:

A� �U� ¼ Xav �U�

k1
F; ð12Þ

where Xav is the average emission spectrum:

Xav ¼ Xp 1� btotð Þ þ
XNd

i¼1

biXd;i: ð13Þ

Multiplying Eq. (11) by U� and Eq. (12) by uj, subtracting and taking
into account that, in virtue of the definition of adjoint operator, the
following relationship holds:

uj � A
� �U� ¼ U� � A �uj; ð14Þ

we obtain:

U� �
XNd

i¼1

bikiXd;i

ki þxj
¼ U� � Xav

k1
�U� � Xp 1� btotð Þ þ

U� � V�1 �ujxj

F �uj
:

ð15Þ

The above expression can be further transformed using the defini-
tions of:

� reactivity:

k1 ¼
1

1� .
; ð16Þ

� neutron generation time associated to the j-th component:

Kj ¼
U� � V�1 �uj

F �ujU
� � Xav

; ð17Þ

� effectiveness factor for the i-th delayed neutron group (see
Section 3.1):

ci ¼
U� � Xd;i

U� � Xav
: ð18Þ

Finally, solving with respect to . we obtain the inhour equation:

. ¼ xj Kj þ
XNd

i¼1

bici

ki þxj

 !
: ð19Þ

This equation differs from the classical one for mono-energetic
neutrons (Nordheim, 1946) for having the effectiveness factor ci as
weighting factor for the contribution of the delayed neutrons.
Within a multi-energy context, the inhour equation can be consid-
ered as constituted by Eq. (11), which provides the eigenfunctions
and Eq. (19), whose roots are the eigenvalues.

2.3. Determination of the constants

To determine the constants of the flux solution, we follow the
approach proposed by Lamarsh (1966). We suppose that the reac-
tor is initially critical, therefore Eq. (1b) gives:

C0;i ¼
F �U0bi

ki
: ð20Þ

However from Eqs. (9) and (6b) we have:

C0;i ¼
XNd

j¼0

F �ujajbi

ki þxj
: ð21Þ

Comparing Eqs. (20) and (21) we can write the following set of
equations (i = 1,. . .,Nd):

F �U0

ki
¼
XNd

j¼0

F �ujaj

ki þxj
: ð22Þ

Another equation is needed to close the system. It can be obtained
projecting Eq. (6a) on an arbitrary function, which we chose as the
adjoint flux:

XNd

j¼0

U� �ujaj ¼ U� �U0: ð23Þ

The solution of the system composed by Eqs. (22) and (23) provides
the coefficients of the expansion in Eq. (5a). Once the aj coefficients
have been computed, the components ci;j of the precursors densities
are obtained applying Eq. (9).
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