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a b s t r a c t

We have extracted a kernel that executes only the most computationally expensive steps of the Monte
Carlo particle transport algorithm – the calculation of macroscopic cross sections – in an effort to expose
bottlenecks within multi-core, shared memory architectures.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Current and next generation processor designs require exploit-
ing on-chip, fine-grained parallelism to achieve a significant frac-
tion of theoretical peak CPU speed. The success or failure of these
designs will have a tremendous impact on the performance and
scaling of a number of key reactor physics algorithms run on
next-generation computer architectures. One key example is the
Monte Carlo (MC) method for neutron transport. MC methods are
characterized by complex memory access patterns that heavily
tax shared resources of multi-core memory hierarchies. In this
analysis we study in depth the on-node scaling properties and
memory contention issues of MC particle transport specifically
for reactor physics calculations.

There has been significant research into the performance and
scaling of MC particle transport algorithms on distributed memory,
High Performance Computing (HPC) systems (Romano and Forget,
2013; Romano et al., 2011). One such effort, the OpenMC transport
code (Romano and Forget, 2013), has investigated scaling on
many-node distributed memory architectures, such as Blue Gene
/P. However, there is little reported on the performance of such
applications on multi-core, shared memory architectures. At least
one recent study does provide a comprehensive view of on-node
scaling behavior at the algorithmic level but does not go into great

depth on the underlying architectural causes of scaling degrada-
tion (Siegel et al., 2014). This is notable as there are significant
memory contention issues in multi-core scaling that are not pres-
ent on distributed memory architectures. Typical (Siegel et al.,
2014) multi-core scaling for the MC particle transport algorithm
is shown in Fig. 1.

To investigate scaling and performance issues of robust,
quasi-static nuclide depletion calculations (i.e., where hundreds
of nuclides are present in the fuel region and performance is dom-
inated by macroscopic cross section calculations), such as are
performed by OpenMC, we abstract a key computational kernel
that is responsible for the majority of the algorithm’s runtime
and implement it in the form of the ‘‘proxy application’’ XSBench.
The end result is that the essential computational conditions and
tasks of fully featured MC transport codes are retained in the
kernel, without the additional complexity of the full application.
This provides a much simpler and more transparent platform for
isolating where both hardware and software bottlenecks inhibit
scaling of the algorithm. We then use and modify our extracted
kernel to identify low-level hardware and software bottlenecks
on an Intel Xeon system, so that we can make an intelligent predic-
tion as to how the MC transport algorithm will scale on next gen-
eration, many-core systems.

1.1. The reactor simulation problem

Computer-based simulation of nuclear reactors is a well estab-
lished field, with origins dating back to the early years of digital
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computing. Traditional reactor simulation techniques aim to solve
the diffusion equation for a given material geometry and starting
(source term) neutron distribution within the reactor. This is done
in a deterministic fashion using well developed numerical meth-
ods. Deterministic codes are capable of running quickly and pro-
viding precise solutions, however, there are other approaches to
the problem that offer potential advantages.

An alternative method, Monte Carlo (MC) simulation, simulates
the path of a particle neutron as it travels through the reactor core.
As many particle histories are simulated, a picture of the full distri-
bution of neutrons within the reactor core is developed. Such codes
are inherently simple, easy to understand, and potentially easy to
rethink when moving to new, novel architectures. Furthermore,
the methodologies utilized by MC simulation require very few
assumptions, resulting in highly accurate results assuming ade-
quate statistical convergence. The downside to this method, how-
ever, is that a huge number of neutron histories must be run in
order to achieve an acceptably low variance in the results. For many
problems this means an impractically long time-to-solution,
though such limitations may be overcome given the increased com-
putational power of next-generation, exascale supercomputers.

1.2. OpenMC

OpenMC is a Monte Carlo particle transport simulation code
focused on neutron criticality calculations (Romano and Forget,
2013). It is capable of simulating 3D models based on constructive
solid geometry with second-order surfaces. The particle interaction
data is based on ACE format cross sections, also used in the MCNP
and Serpent Monte Carlo codes. OpenMC has been used to investi-
gate scaling concerns on distributed memory architectures, such as
the IBM Blue Gene/P and Blue Gene/Q.

OpenMC was originally developed by members of the Computa-
tional Reactor Physics Group at the Massachusetts Institute of
Technology starting in 2011. Various universities, laboratories,
and other organizations (including CESAR) now contribute to the
development of OpenMC.

1.3. XSBench

The XSBench proxy application models the most computation-
ally intensive part of a typical MC transport algorithm – the calcu-
lation of macroscopic neutron cross sections, a kernel which
accounts for around 85% of the total runtime of OpenMC (Siegel
et al., 2014). XSBench retains the essential performance-related

computational conditions and tasks of fully featured reactor core
MC neutron transport codes, yet at a fraction of the programming
complexity of the full application. Particle tracking and other
features of the full MC transport algorithm were left out of XSBench
as they take up only a small portion of runtime. This provides a
much simpler and far more transparent platform for testing the
algorithm on different architectures, making alterations to the
code, and collecting hardware runtime performance data.

XSBench is in active development by members of the Center for
Exascale Simulation of Advanced Reactors (CESAR) at Argonne
National Laboratory. The application is written in C, with multi-
core parallelism support provided by OpenMP. XSBench is an open
source software project. All source code is publicly available online.

2. Algorithm

2.1. Reactor model

When carrying out reactor core analysis, the geometry and
material properties of a postulated nuclear reactor must be speci-
fied in order to define the variables and scope of the simulation
model. For the purposes of XSBench, we use a well known commu-
nity reactor benchmark known as the Hoogenboom-Martin model
(Hoogenboom et al., 2010). This model is a simplified analog to a
more complete, ‘‘real-world’’ reactor problem, and provides a stan-
dardized basis for discussions on performance within the reactor
simulation community. XSBench recreates the computational con-
ditions present when fully featured MC neutron transport codes
(such as OpenMC) simulate the Hoogenboom-Martin reactor model,
preserving a similar data structure, a similar level of randomness of
access, and a similar distribution of FLOPs and memory loads.

2.2. Neutron cross sections

The purpose of an MC particle transport reactor simulation is to
calculate the distribution and generation rates of neutrons within a
nuclear reactor. In order to achieve this goal, a large number of
neutron lifetimes are simulated by tracking the path and interac-
tions of a neutron through the reactor from its birth in a fission
event to its escape or absorption, the latter possibly resulting in
subsequent fission events.

Each neutron in the simulation is described by three primary
factors: its spatial location within a reactor’s geometry, its speed,
and its direction. At each stage of the transport calculation, a deter-
mination must be made as to what the particle will do next. Possi-
ble outcomes include uninterrupted continuation of free flight,
collision, or absorption (possibly resulting in fission). The determi-
nation of which event occurs is based on a random sampling of a
statistical distribution that is described by empirical material data
stored in main memory. This data, called neutron cross section data,
represents the probability that a neutron of a particular speed
(energy) will undergo some particular interaction when it is inside
a given type of material. To account for neutrons across a wide
energy spectrum and materials of many different types, the data
structure that holds this cross section data must be very large. In
the case of the simplified Hoogenboom-Martin benchmark roughly
5.6 GB1 of data is required.

2.3. Data structure

A material in the reactor model is composed of a mixture of
nuclides. For instance, the ‘‘reactor fuel’’ material might consist

Fig. 1. OpenMC performance scaling on a 16-core xeon node.

1 We estimate that for a robust depletion calculation, in excess of 100 GB of cross
section data would be required (Romano et al., 2013).
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