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a b s t r a c t

Three-dimensional radiation transport simulations play a key role in a number of problems found in
nuclear science and engineering. When considering deterministic methods for solving the three-dimen-
sional radiation transport equation, the Sn method of Carlson and Lee is one of the most commonly found
techniques. The Sn method relies on a given set of ‘‘discrete ordinates’’ or discrete directions in which
radiation streams. This set of discrete ordinates also must form a quadrature (numerical integration)
so that the angular flux moments can be estimated and the scattering source calculated. In this paper
we review a number of recently developed angular quadrature sets and compare their performance on
a number of reactor physics problems.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

With the increasing availability of large computing resources,
three-dimensional deterministic radiation transport simulations
are becoming more commonplace, but still far from routine. One
class of techniques for solving the three-dimensional radiation
transport equation is based on the ‘‘angular segmentation’’ or Sn

method of Carlson and Lee (1961). For the steady-state, monoener-
getic transport problem

X �rw r;Xð ÞþRt rð Þw r;Xð Þ¼
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the Sn equations read (Lewis and Miller, 1993)
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where the Legendre scattering moments, rn
s , have been truncated to

degree N;/m
n are the angular flux moments, calculated by quadra-

ture as
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with Ym
n a spherical harmonic of degree n and order m and the over

bar denotes complex conjugation. The directions Xi in Eq. (2) are
from the quadrature set Xi;wif gM

i¼1 used in Eq. (3). Thus we see that
quadratures play a central role in Sn methods. In particular, for
three-dimensional Sn transport calculations, quadratures on the
sphere are of particular interest.

When Carlson and Lee first developed the Sn method, they con-
structed the so-called level symmetric quadrature sets. These
quadratures sets, a mainstay in many of today’s production trans-
port codes, were constructed using a specific prescription for the
geometric placement of the nodes (directions). The associated
quadrature weights were then determined by enforcing angular
moment conditions and solving a linear system of equations
(Carlson and Lee, 1961). Unfortunately, this construction yields
negative weight quadratures when higher order quadratures are
sought. Level symmetric quadratures do, however, posses cubic
symmetry which is important for implementing reflective bound-
ary conditions.

There are a number of recently developed quadratures with
properties that are significantly different from the standard level-
symmetric quadratures. The purpose of this paper is to report
our findings from a systematic comparison, based on various reac-
tor physics test problems, of these new quadratures.

The outline of this paper is as follows. In the first section, we
outline the basic problem of constructing a quadrature on the
sphere. We then describe the commonly used level-symmetric
and Legendre–Chebyshev ðPn � TnÞ quadratures. In the next
section, a description of three recently developed quadratures is
given: the even–odd moment quadratures, the linear
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discontinuous finite element surface area (LDFESA) quadratures
and Icosahedral quadratures. Through a series of reactor physics
calculations, we then test the performance of each quadrature
set. Calculations are done with the transport codes PENTRAN
(Sjoden and Haghighat, 1997) and TITAN (Yi, 2007). We conclude
the paper with a discussion of the results.

2. Quadratures on the sphere

The field of numerical integration has a long history and can be
traced back to ancient times (Cools, 1997). Indeed the Greek
philosophers developed the ‘‘Method of Exhaustion’’ to estimate
the area inside of a two-dimensional closed curve. Today we
understand the Method of Exhaustion as a technique in numerical
integration. Numerical integration (quadrature) remains an active
area of research today, with multi-dimensional quadratures of par-
ticular importance for three-dimensional radiation transport.

Recall that a quadrature formula is used to approximate a defi-
nite integral:

I f½ � ¼
Z

V
f xð Þdnx �

XM

i¼1

wif xið Þ; ð4Þ

where V � Rn is the region of integration and xi is a quadrature
node with associated weight wi. In developing a quadrature for-
mula, the specific class of functions for which Eq. (4) is to hold must
be specified. For example, suppose V ¼ ½�1;1� and we want Eq. (4)
to hold for all polynomials of maximum degree 2n� 1. Then we are
lead to the Gaussian quadratureZ 1

�1
f xð Þdx ¼

Xn

i¼1

wif xið Þ; ð5Þ

where the nodes xi are related to the zeros of the nth degree
Legendre polynomial and the weights are given by

wi ¼
2

1� xið Þ P0n xið Þ
� �2 : ð6Þ

Note that the dimension of the subspace of polynomials (in one
variable) of degree less than or equal to 2n� 1 is 2n and, moreover,
there are 2n degrees of freedom in the quadrature Eq. (4), n nodes
and n weights. Thus, Gaussian quadratures are the most efficient
in the sense that with 2n degrees of freedom, they can integrate
2n functions. We remark that this fundamental result is central to
showing that the slab-geometry Pn and Sn equations are equivalent
(Lewis and Miller, 1993). In contrast, the trapezoidal rule using n
nodes can in general integrate up to degree n� 1 polynomials
(Isaacson and Keller, 1966). In the case, the efficiency is n=2n or
1=2. For slab-geometry, azimuthally-symmetric Sn problems, a
number of angular quadratures can be found in (Barros, 1997).

With the goal of discretizing the scattering operator in the
Boltzmann transport equation, we now discuss Eq. (4) in the con-
text of V ¼ S2, the unit sphere in R3. A natural parametrization
of a point X 2 S2 is

X ¼ sin h cos /; sin h sin /; cos hð ÞT ; ð7Þ

where h is the polar angle and / is the azimuthal angle. We also
denote X ¼ l;g; nð ÞT , with l ¼ sin h cos /;g ¼ sin h sin / and
n ¼ cos h. The functions for which we require Eq. (4) to hold will
be the spherical harmonics, defined by

Ym
l h;/ð Þ¼ �1ð Þl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where Pm
l is the Associated Legendre Function. In the sequel, we will

write Ym
l h;/ð Þ ¼ Ym

l Xð Þ. It is a fundamental result, and a key

difference between one-dimensional and multi-dimensional trans-
port problems, that Gaussian quadratures do not exist in higher
dimensions (Reimer, 2003). In fact, this is what prevents the Pn

and Sn methods from being equivalent in higher (than one) dimen-
sions. We are thus faced with the task of determining nodes (direc-
tions) Xi and associated weights wi such that

Z
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holds for as large of degree as possible spherical harmonic.
There are various approaches to developing such a quadrature.

One approach, essentially that taken by Carlson and Lee when
developing the Level-Symmetric Quadratures (Carlson and Lee,
1961), is to first specify the locations of the nodes Xi using some
type of geometric arguments. Then to determine the weights,
one has to solve a linear system of equations derived by enforcing
various moment conditions, that is, requiring Eq. (9) to hold for
various l and m. A second approach is to take a tensor product of
two, one-dimensional quadratures (Longoni and Haghighat,
2001). For example, one can use a Gaussian quadrature in the polar
angle and a trapezoidal rule in the azimuthal angle. This approach
leads to the so-called Pn-Tn or product quadratures. A third
approach is to solve the nonlinear equations formed by writing
Eq. (9) for each 0 6 l 6 L and jmj 6 l. For a given L, this leads to a

system of Lþ 1ð Þ2 nonlinear equations for the 3M parameters
hi;/i;wið Þ; i ¼ 1;2; . . . M. This approach was taken by Lebedev

(Lebedev, 1976) and Ahrens and Beylkin (Ahrens and Beylkin,
2009). To reduce the size of the nonlinear system of equations, a
symmetry condition on the location of the nodes can be used.
Then a fundamental result of Sobolev (Sobolev, 1962) shows that
the number of equations that need to be considered is reduced
by a factor of 1=jGj, where jGj is the size of the symmetry group
imposed on the nodes.

In the case of the sphere, a measure of quadrature efficiency is
(McLaren, 1963)

g ¼ N þ 1ð Þ2

3M
; ð10Þ

where N is the maximum degree spherical harmonic the quadrature
can integrate and there are M points in the quadrature. Since the
subspace of spherical harmonics of maximum degree N contains

N þ 1ð Þ2 linearly independent functions and each of the M quadra-
ture points carries three degrees of freedom, two angles and one
weight, we expect g to be close to unity for highly efficient quadra-
tures. In fact, quadratures developed by solving the nonlinear sys-
tem of equations, Eq. (9), are typically very efficient, with
efficiencies of 99% common. In contrast, it can be shown that the
product quadratures (e.g. Pn–Tn) are 66% efficient and, through
numerical integration, the level symmetric quadratures range in
efficiency from 66% to approximately 29% efficient (Ahrens, 2012).

As indicated in Eq. (2), each ordinate in a quadrature set corre-
sponds to an Sn equation. Said differently, if there are M directions
in a quadrature set, then one must perform M transport sweeps
when inverting the left hand side of Eq. (2). Other considerations
aside, for three-dimensional Sn calculations a quadrature with
the highest possible efficiency is desirable, since if the scattering
moments can be accurately calculated with fewer quadrature
points, then there are fewer transport sweeps to be done.

3. Level-symmetric quadrature and Pn–Tn

Level-symmetric (denoted as LS or LQ) quadrature is widely
incorporated in lower order quadratures for three-dimensional Sn

calculations, and it is often the primary quadrature discussed for
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