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a b s t r a c t

Minimum critical mass configurations of well moderated coupled core systems are studied for the
moderators heavy water, beryllium and graphite. Characteristic for these systems are the delta functions
in the fuel distributions at the core boundaries facing each other and the occurrence of minima in the core
size, both depending on the moderator properties and the inter core distance. For an ideal moderator like
pure heavy water, the minimum critical mass configuration of the fuel consists of two delta functions for
a range of inter core distances.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The design of a critical system with a minimum amount of fis-
sile material is a classical problem in reactor physics. The seminal
paper in this field is authored by Goertzel (1956). He presented an
elegant proof that in the framework of diffusion theory and in a
well moderated system with the same moderator in core and
reflector, the fuel importance is proportional to the thermal flux;
this implies that a minimum critical mass (from now on
abbreviated as MCM) requires a fuel distribution that leads to a flat
thermal flux in the core, which theorem is later named after him.
Since then many researchers contributed to the MCM problem;
an extensive list of references is given by Williams (2004). An
important finding in the last reference concerns a peculiar conse-
quence of the Goertzel theorem. If one requires that the thermal
flux is flat in the core region, this leads for every fuel/moderator
combination to a well-defined core size with MCM. However, if
one requires a core size smaller than this, the case of so-called
restricted MCM, this requires an unphysical fuel distribution with
a delta function at the core–reflector interface. With a restricted
core size, the thermal neutron current from reflector to the core
is higher than vice versa which would lead to a flux gradient near
the interface; the surplus thermal current from reflector to core
must in that case be absorbed by adding a delta distribution to
the fuel at the interface. This means an infinitely thin sheet of fuel
with infinite density which is of course not physical. Williams

(2004) showed that this is a consequence of diffusion theory; by
presenting a transport theory analysis he showed that the delta
distribution is replaced by a steeply increasing (but still diverging)
fuel density near the interface.

While the Goertzel theorem refers to systems with a continuous
fuel distribution, a paper by the present author (Van Dam, 2013)
presents an extension for heterogeneous systems with thin fuel
plates, that allow an analysis by treating the fuel sheets with the
so-called Feinberg–Galanin–Horning method of heterogeneous
reactors, most recently explained in Williams (2000).

In the heterogeneous case MCM is realized by positioning the
fuel sheets in such a way that, in addition to thermal flux equality
at the sheets, the so-called thermal current balance condition at
each sheet is satisfied, which means equal currents at both sides
of the sheet. By these conditions both the individual positions
and thermal absorption strengths of the fuel sheets are fixed.

Williams presented in (Williams, 2003) another interesting
‘‘anomalous’’ phenomenon: in MCM systems with finite reflectors
and a continuous fuel distribution the critical core size can take
the same value for two different reflector thicknesses. A physical
explanation of this fact was presented in Van Dam (accepted for
publication).

The present paper focusses on MCM systems with coupled
cores. This means that we consider two well moderated and
reflected cores, separated by a layer of the same moderator with
such a thickness that neutrons from one core can interact in the
other core. In this layer the low thermal neutron absorption in a
good moderator leads to an increase in thermal flux; for this reason
the layer is in literature often indicated as ‘‘flux trap’’. This is a
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special case of restricted MCM because the thickness of the flux
trap is taken as fixed while for absolute MCM the flux trap should
be absent. From physical considerations we expect that the high
thermal neutron current from the flux trap to the cores necessi-
tates a ‘‘delta layer’’ of fuel at the core–trap interfaces and that
the critical core thickness as a function of trap thickness will show
a phenomenon comparable to the anomaly discovered by Williams
in 2003.

2. Theory

In the framework of the Goertzel theorem we adopt a 2-group
diffusion model for a well thermalized system without absorption
of non-thermal neutrons, well applicable for a system with pure U-
235 as a fuel. In addition we consider a one-dimensional slab
geometry.

The two-energy group equations for a critical system are:

D1
d2

dx2 /1 � R12/1 þ gRaf ðxÞ/2 ¼ 0 ð1aÞ

D2
d2

dx2 /2 þ R12/1 � ðRaf ðxÞ þ RmÞ/2 ¼ 0 ð1bÞ

where the subscripts 1 and 2 refer to the fast and thermal group,
respectively. The diffusion coefficients D refer to the pure modera-
tor; this is valid for very diluted U-235 in a high quality moderator
so all macroscopic moderator parameters are space independent.
R12 is the moderation cross section, Rm is the absorption cross sec-
tion of the moderator, Raf is the macroscopic thermal absorption
(fission + capture) cross section of the fuel (the only space depen-
dent nuclear parameter in this case) and g the average number of
fission neutrons emitted per absorbed thermal neutron in the fuel.
The independent space variable x is omitted at the fluxes for sim-
plicity of notation.

We put the origin of the x-coordinate at the symmetry axis of
the system and describe half of the system as follows:

From x = 0 to x = t: the internal moderator or ‘‘trap’’.
From x = t to x = t + c: the core region.
From x = t + c to x = T: the reflector, T being the extrapolated half

system thickness.
The general solution for the fast flux is:

0 6 x 6 t : £1 ¼ A cosh j1xð Þ ð2aÞ

t 6 x 6 t þ c : £1 ¼ B cos kxð Þ þ C sin kxð Þ þ gRm

g� 1ð ÞR12
ð2bÞ

t þ c 6 x 6 T : £1 ¼ E sinh j1 T � xð Þ½ � ð2cÞ

where j1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D1=R12

p
.

Eq. (2b) is obtained as follows: because of the linearity of the
system, the absolute fluxes are arbitrary, so we assume a unit ther-
mal flux in the core. As a consequence, Eq. (1b) in the core gives:

Raf ðxÞ ¼ R12/1ðxÞ � Rm ð2dÞ

Inserting (2d) into (1a) gives the equation for the fast flux in the
core:

D1
d2

dx2 /1 þ g� 1ð ÞR12/1 � gRm ¼ 0: ð2eÞ

The homogeneous part is satisfied by sine and cosine solutions,
where k ¼ j1

ffiffiffiffiffiffiffiffiffiffiffiffi
g� 1

p
, a particular solution of the inhomogeneous

equation is the last term in Eq. (2b).

In Eqs. (2a–2c) we have already taken into account require-
ments of symmetry and vanishing flux at the extrapolated outer
boundary.

Next we have to apply boundary conditions to the two inner
boundaries. The inner boundary between flux trap and core can
contain a delta layer of fuel with strength K, the position of the
outer core boundary results from the criticality condition for the
system.

Continuity of fast flux at x = t gives:

A coshðj1tÞ ¼ B cos ktð Þ þ C sin ktð Þ þ gRm

g� 1ð ÞR12
ð3aÞ

The fast current densities at x = t, taking into account the fast neu-
tron production in the K layer by the unit thermal flux, should
obey:

j1D1A sinhðj1tÞ þ kD1B sin ktð Þ � kD1C cos ktð Þ ¼ gK ð3bÞ

Continuity of flux and current at x = t + c gives:

B cos k t þ cð Þ½ � þ C sin k t þ cð Þ½ � þ gRm

g� 1ð ÞR12

¼ E sinh j1 T � t � cð Þ½ � ð3cÞ

�kB sin k t þ cð Þ½ � þ kC cos k t þ cð Þ½ �
¼ �j1E cosh j1 T � t � cð Þ½ � ð3dÞ

For the thermal flux the general solutions are:

0 6 x 6 t : £2 ¼ A
R12

Rm � j2
1D2

cosh j1xð Þ þ F cosh j2xð Þ ð4aÞ

t 6 x 6 t þ c : £2 ¼ 1 ð4bÞ

tþc6 x6 T : £2¼ E
R12

Rm�j2
1D2

sinh j1 T�xð Þ½ �þGsinh j2 T�xð Þ½ �

ð4cÞ

where j2 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rm=D2

p
.

Eq. (4b) reflects the aforementioned choice of a unit thermal
flux in the core.

The boundary conditions are two for the flux continuities at the
internal interfaces and two current balances, taking into account
the K absorber layer for the thermal neutrons:

£2 tð Þ ¼ A
R12

Rm � j2
1D2

cosh j1tð Þ þ F cosh j2tð Þ ¼ 1 ð5aÞ

£2 tþcð Þ¼ E
R12

Rm�j2
1D2

sinh j1 T� t�cð Þ½ �þGsinh j2 T� t�cð Þ½ � ¼1

ð5bÞ

£
0
2 t�ð Þ ¼ A

j1R12

Rm � j2
1D2

sinhðj1tÞ þ Fj2 sinhðj2tÞ ¼ � K
D2

ð5cÞ

£
0
2 t þ cð Þþ ¼ �E

j1R12

Rm � j2
1D2

cosh j1 T � t � cð Þ½ �

� Gj2 cosh j2 T � t � cð Þ½ � ¼ 0 ð5dÞ

where the indices ‘‘�’’ and ‘‘+’’ refer to immediately left and right
from an interface, respectively.

Eq. (5d) expresses a continuity of thermal gradient (equal to
zero) at the right core boundary. This is the condition for absolute
MCM and implicitly determines the core size; in case we fix the
core size, a delta function (positive or negative, the latter being
physical) in the fuel distribution is needed at the outer core
boundary.

H. van Dam / Annals of Nuclear Energy 81 (2015) 276–280 277



Download	English	Version:

https://daneshyari.com/en/article/8068748

Download	Persian	Version:

https://daneshyari.com/article/8068748

Daneshyari.com

https://daneshyari.com/en/article/8068748
https://daneshyari.com/article/8068748
https://daneshyari.com/

