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a b s t r a c t

In this paper a data mining analysis for BWR nuclear fuel lattice performance is shown. In a typical three-
dimensional simulation of the reactor operation simulator gives the core performance for a fuel lattice
configuration measured by thermal limits, shutdown margin and produced energy. Based on these results
we can determine the number of fulfilled parameters of a fuel lattice configuration. It is interesting to
establish a relationship between the fuel lattice properties and the number of fulfilled core parameters
in steady state reactor operation. So, with this purpose data mining techniques were used. Results
indicate that these techniques are able to predict with enough accuracy (greater than 75%) if a given fuel
lattice configuration will have a either ‘‘good’’ or ‘‘bad’’ performance according to reactor core simulation.
In this way, they could be coupled with an optimization process to discard fuel lattice configurations with
poor performance and, in this way accelerates the optimization process. Data mining techniques apply
some filter methods to discard those variables with lower influence in the number of core fulfilled
parameter. From this situation, it was also possible to identify a set of variables to be used in new
optimization codes with different objective functions than those normally used.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In-core fuel management for BWRs is an activity that requires
solving at least four combinatorial optimization problems. Firstly,
a fuel lattice design is made according to the energy requirements
of a Nuclear Power Plant. Secondly, a fresh fuel bundle is designed
using the optimized fuel lattices. In the next problem, once fresh
fuel bundles are designed, the most burned fuel bundles at the
end of the cycle length are discharged from the core and then, they
are replaced by the fresh fuel bundles. New and old fuel bundles
are shuffled into the core to make a new fuel reload scheme (fuel
load design). Finally, control rod patterns (CRP) for that new fuel
reload, are designed. If CRPs cannot be designed, it must be neces-
sary to change either the fuel reload or the fuel lattice design, and
repeat all the optimization steps. Each optimization problem is
very expensive in both time and computational effort. So the whole
process may take several days.

Efforts made at the National Institute of Nuclear Research in
Mexico to solve the complete process mentioned above, includes
the design of the fuel lattice considering both the Local Power

Peaking Factor (LPPF) and the neutron infinite multiplicative factor
(kinf). A fuel lattice design needs around three hours to be opti-
mized with heuristic algorithms. In that optimization process, LPPF
is minimized while kinf is kept in a proposed reactivity interval.
Both the average uranium enrichment and the gadolinia concen-
trations are fixed at the beginning of the optimization process.
CASMO-4 (Rhodes and Edenius, 2004) code is used to calculate
both the LPPF and the kinf parameters at 0.0 GWD/T of fuel lattice
exposure. However, if both the LPPF and the kinf along the fuel
lattice life are computed by CASMO-4 in order to be used in the
objective function, the optimization process could delay 2 or
3 days approximately. This is the main reason to use fuel lattice
parameters at the beginning of the fuel lattice life. Here, the prob-
lem is to verify the fuel lattice behavior at high exposures. This is
verified by a reactor core simulation (using SIMULATE-3 code
(Studsviks Scandpower, 2005) with the designed fuel lattices allo-
cated into a fresh fuel batch and loaded into the reactor core.

Now, efforts to estimate the fuel lattice three-dimensional (3D)
performance without SIMULATE-3 executions are being made. In
Ortiz-Servin et al. (2014), an Artificial Neural Network (ANN)
(Haykin, 2008) was trained to predict when a fuel lattice design
could operate into the core in a safe way for both fixed fuel reload
and CRPs. In Appendix 1, a brief description of the ANN is given.

http://dx.doi.org/10.1016/j.anucene.2015.02.017
0306-4549/� 2015 Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Tel.: +52 (55) 53297200; fax: +52 (55) 53297301.
E-mail address: juanjose.ortiz@inin.gob.mx (J.J. Ortiz-Servin).

Annals of Nuclear Energy 80 (2015) 236–247

Contents lists available at ScienceDirect

Annals of Nuclear Energy

journal homepage: www.elsevier .com/locate /anucene

http://crossmark.crossref.org/dialog/?doi=10.1016/j.anucene.2015.02.017&domain=pdf
http://dx.doi.org/10.1016/j.anucene.2015.02.017
mailto:juanjose.ortiz@inin.gob.mx
http://dx.doi.org/10.1016/j.anucene.2015.02.017
http://www.sciencedirect.com/science/journal/03064549
http://www.elsevier.com/locate/anucene


In Ortiz-Servin et al. (2014), the authors considered a fuel lattice
configuration as a set of six fuel lattices belonging to two fresh fuel
batches. They trained an ANN to assess if a given fuel lattice design
is ‘‘promising’’ or not. If it was ‘‘promising’’, then that design was
evaluated with the reactor code and energy requirements were
verified. In that paper, it was seen that the cycle length could be
increased and uranium enrichment could be decreased with
respect to a reference fuel cycle. ANN to predict the parameter
CPF (number of core parameters fulfilled) was presented. Para-
meters included in CPF are: (1) fraction to linear power density
(FLPD), (2) fraction to critical power rate (FLCPR), (3) fraction to
average linear power (MAPRAT), through of the cycle length; (4)
cold shutdown margin (SDM) at the beginning of the cycle, and
(5) deviation of the effective multiplicative factor (keff) from the
target keff throughout of the cycle length. CPF measures the num-
ber of fulfilled parameters. If CPF = 0, it means that fuel lattice will
not fulfill any of safety parameters; in the opposite, if CPF = 5 this
implies that fuel lattice fulfills all the safety parameters described.
A good fuel lattice combination is that with CPF = 5. Fuel lattices
combination with CPF < 5 will have poor performance in reactor
operation.

It is very well known that ANN acts like ‘‘black boxes’’. We do
not have information about how they learn to classify in a correct
way. In order to understand this point, think in the neutron flux
distribution into the reactor core. It depends on neutrons energy,
materials, temperature, etc. There is an explicit way to relate input
and output variables through of Neutrons Transport Theory. But, in
ANN is not possible to represent an explicit relation between input
and output patterns. Certain data mining techniques (Shu-Hsien
et al., 2012) may allow to extract more information about the
relation between inputs and outputs, which helps to improve
understanding of the problem at hand.

The aim of this paper is to show how some data mining based
models or classifiers can be used to improve the classification of
the fuel lattice designs in terms of CPF values. Data mining is
described in Shu-Hsien et al. (2012) as the process of extracting
new, useful, comprehensible knowledge from data. In other words,
the fundamental task of data mining is to find intelligible models,
starting from the data.

Application of data mining techniques for a classification task
requires, essentially, addressing all or some the following steps:

� Identification of the problem.
� Data preparation:

o Construction of a data set of the problem: Data set (observa-
tions, measurements, etc.) are accompanied by labels indi-
cating the class or categories of the observations.

o Definition of the training data set.
o Data pre-processing.
� Training step: Data mining technique builds a model (classifier)

using the training data set.
� Testing step (evaluation): Estimate the classifier accuracy. The

classifier is evaluated (verified) with respect to the previously
unseen examples. For this, we use a testing data set.

In our particular case, we address the following steps:

� Data sets construction: The data set contains BWR fuel lattice
features as variables, and the corresponding CPF value as label.
The original data set is splitted in two: Data-TR (training data
set) and Data-TS (testing data set).
� We will use several data mining techniques (C4.5 (J48), RepTree

and Random Forest) provided in the WEKA Package (the Waika-
to Environment for Knowledge Analysis) (Hall et al., 2009).
These techniques obtain models based on decision trees. Deci-
sion trees are comprehensible and interpretable models, and
they allow a better understanding of the relationships between
the categories and variables.

Fig. 1. Fuel bundle axial composition.

Table 1
List of design variables of the fuel lattice.

Variable name Description

Cx_GD Total number of gadolinia rods
Cx_sGD Total number of rods without gadolinia
Cx_gd9 Number of rods with U% = 3.60 and gadolinia

concentration of 2%
Cx_gd10 Number of rods with U% = 3.60 and gadolinia

concentration of 4%
Cx_gd11 Number of rods with U% = 3.60 and gadolinia

concentration of 5%
Cx_gd12 Number of rods with U% = 3.60 and gadolinia

concentration of 6%
Cx_gd13 Number of rods with U% = 3.95 and gadolinia

concentration of 2%
Cx_gd14 Number of rods with U% = 3.95 and gadolinia

concentration of 4%
Cx_gd15 Number of rods with U% = 3.95 and gadolinia

concentration of 5%
Cx_gd16 Number of rods with U% = 3.95 and gadolinia

concentration of 6%
Cx_gd17 Number of rods with U% = 4.40 and gadolinia

concentration of 2%
Cx_gd18 Number of rods with U% = 4.40 and gadolinia

concentration of 4%
Cx_gd19 Number of rods with U% = 4.40 and gadolinia

concentration of 5%
Cx_gd20 Number of rods with U% = 4.40 and gadolinia

concentration of 6%
Cx_gd21 Number of rods with U% = 3.95 and gadolinia

concentration of 7%
Cx_gd22 Number of rods with U% = 4.40 and gadolinia

concentration of 7%
Cx_gd-gd Number of gadolinia rods with gadolinia rods

around it
Cx_gd-h20 Number of gadolinia rods next to water channels
Cx_ud1 Number of rods with U% = 2.0% not in peripheral

fuel lattice
Cx_ud2 Number of rods with U% = 2.4% not in peripheral

fuel lattice
Cx_ud3 Number of rods with U% = 2.8% not in peripheral

fuel lattice
Cx_ud4 Number of rods with U% = 3.2% not in peripheral

fuel lattice

J.J. Ortiz-Servin et al. / Annals of Nuclear Energy 80 (2015) 236–247 237



Download	English	Version:

https://daneshyari.com/en/article/8068783

Download	Persian	Version:

https://daneshyari.com/article/8068783

Daneshyari.com

https://daneshyari.com/en/article/8068783
https://daneshyari.com/article/8068783
https://daneshyari.com/

