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a b s t r a c t

There are two distinct aspects to this paper. Firstly, it is shown that the AN form of the SPN equations can
be derived from a suitably discretised form of the even parity transport equation. The procedure for doing
this is explained and some limitations of SPN_AN theory are illustrated. Secondly, to show the magnitude
of the errors in AN theory we have taken the problem of an infinitely repeating lattice in which the cell
structure is symmetric but can contain any number of sub-regions. The regions can be elliptical and/or
rectangular. Because of the repeating lattice, we can express the flux in the cell in the form of a
Fourier series. The expansion coefficients of the series may then be obtained from a set of linear equa-
tions. It is found that the series converges very slowly and a large number of terms is required which
can significantly increase the computational time required for accurate solutions. Use is made of a high
order SN (N = 200) method to compare and test convergence of the Fourier method for an exact case and
for the SPN equivalent.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

There still appear to be some questions regarding the origin, the
accuracy and the validity of the SPN equations (Gelbard, 1960). In
this note we wish to comment on the similarities between the AN

method of Coppa and Ravetto (1982), Ciolini et al. (2002, 2006) and
the even-parity transport equation (Ackroyd, 1997). In addition,
we will extend our Fourier transform technique (Wood and
Williams, 1972; Hall et al., 2012) to the solution of the even-parity
equation and the associated AN equations for an infinite, repeating
lattice. In general, we consider a rectangular cell with an ellipsoidal
fuel rod cross section; the major part of the numerical calculations
will, however, consider a square cell with a circular cross section
rod and, in one case, avoided gap between moderator and fuel.
As far as the AN equations are concerned, we will show that they
are a special type of approximation to the even parity equation
and are exact for the case of a spatially constant total cross section
in the cell but fail when the cross section varies with position in
the cell. A detailed description of SPN and AN equations is given
by McClarren (2010) and others in the same volume of Transport
Theory and Statistical Physics. Our paper is offered as a further
contribution to this fascinating subject.

The numerical work involved, concerns the summation of a
double trigonometric series which converges slowly. When the

Fourier method for solving this type of problem was first proposed
by one of the authors in 1972, computing facilities were as nothing
compared with those of today. For this reason we can now sum the
slowly converging series to a reasonable degree of accuracy and
this enables benchmarks to be established for a number of impor-
tant cell properties, e.g. the disadvantage factor and associated
average fluxes. We illustrate the work by calculating flux profiles
and average fluxes in two and three region cells with and without
void regions and point out the limitations of the SPN_AN method. A
detailed explanation of the numerical procedure for evaluating the
series is given.

2. General theory

The one speed, even-parity transport equation may be written
for isotropic scattering as (Ackroyd, 1997)

�X � r 1
RðrÞX � r/þðr;XÞ
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where the even-parity flux is:

/þðr;XÞ ¼ 1
2
ð/ðr;XÞ þ /ðr;�XÞÞ ð2Þ

/ðr;XÞ being the normal angular flux. For rectangular
co-ordinates:
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and for our two-dimensional cell the axial flux is flat and so the last
term is absent in the calculations that follow.

Now the AN equations (a particular form of the SPN equations)
can be written as Ciolini et al. (2002):
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where wa are the Gauss–Legendre weights and la the roots of
P2N�1ðlÞ ¼ 0. It is stressed that the la do not have any physical
meaning, except in the one-dimensional case where they corre-
spond to the cosine of the neutron’s direction (Ravetto, 2014).
Also the total scalar flux is:
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wauaðrÞ ð4Þ

We now wish to compare Eq. (3) with the even-parity equation.
If we set:

JaðrÞ ¼ �
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RðrÞruaðrÞ ð5Þ

then we have from (3) and (5):
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and:
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Multiplying Eq. (6) by wa and summing over a, leads to:
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where:
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also multiplying Eq. (7) by wa and summing over a, we have:
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If we now integrate the even-parity equation (1) over X, we
find:
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where:
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and we have used (Ackroyd, 1997, page 248):Z
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Clearly therefore we may write the current J as:
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so that Eq. (11) may be written in standard form as:

r � JðrÞ þ RabsðrÞ/0ðrÞ ¼ QðrÞ

Let us now compare Eqs. (10) and (13), where for consistency:
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which implies that Kx ¼ Ky ¼ Kz. Also if we add the equations above
we get:Z

dXðX2
x þX2

y þX2
z Þ/ðr;XÞ¼

Z
dX/ðr;XÞ¼/0ðrÞ¼3

XN

aa¼1

wal2
auaðrÞ

ð15Þ
which from Eq. (4) is clearly incorrect. Where is the problem? It
seems to be connected with the AN assumption of using the same
la for each direction. While Kz is acceptable with Xz ¼ l and hence
la, the x and y cases would need
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so that the sum adds up to unity. We explore this phenomenon in
the following section, but it is important to note once again that
the authors of the AN method did not attach any physical meaning
to la. It is only in this work that we try to do this by using la as an
intuitional guide.

3. Modifications to AN method

As a possible method of approach, we could modify the proce-
dure described above by associating a different value of la with
each direction as hinted at in the previous paragraph. To do that
we re-write the AN Eq. (3) as:
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with:
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and vb ¼ 1=M and wb ¼ pb=M. The quantities ua and la are obtained
from the Gauss–Legendre quadrature points. We now define the
directional currents:
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with:

Jab ¼ iJabx þ jJaby þ kJabz ð19Þ

Multiplying Eq. (18) by suitable weight functions ua and vb and
summing over a and b, we find:
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