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a b s t r a c t

An adaptive high dimensional model representation (HDMR) is used to decompose the response
parameter keff into a superposition of lower dimensional subspaces which are in-turn projected on to a
polynomial basis. These projections are evaluated using an adaptive quadrature scheme which is used
to infer the polynomial orders of the basis. The combination of adaptive HDMR and adaptive quadrature
techniques results in a sparse polynomial expansion which has been optimised to represent the variance
of the response with the minimum number of polynomials. The combined application of these techniques
is illustrated using UOX and MOX pin cell problems with evaluated nuclear covariance data. We show
that this approach to calculating the variance in keff is an order of magnitude more efficient when com-
pared to Latin Hypercube sampling with the same number of samples for problems involving up to 988
random dimensions.

� 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In recent years there has been significant interest in developing
computationally accurate, yet efficient, uncertainty quantification
methods that can model both small and large parametric uncer-
tainties. The polynomial chaos method has attracted significant
interest as it can model both small and large parametric errors
whilst also being computationally efficient, accurate and able to
be applied to a very wide range of physical problems. This tech-
nique has been used for a variety of applications including reactor
physics (Perkó et al., 2014; Cooling et al., 2013; Williams, 2012)
and neutron transport (Fichtl, 2009; Fichtl and Prinja, 2011;
Ayres et al., 2012; Williams and Eaton, 2010). This paper aims to
determine the computational accuracy and efficiency of polynomi-
al chaos methods when applied to uncertainty quantification in
nuclear criticality problems. More specifically, this paper focusses
on the determination of the uncertainty of the effective multiplica-
tion factor (keff ) due to uncertainties in the microscopic neutron
cross-sections.

The technique known as polynomial chaos was originally pro-
posed by Wiener (1938). In this approach, a random process is
expanded using Hermite polynomials in terms of Gaussian random
variables. This work was later generalised by Xiu and Karniadakis
(2002) who associated an optimal polynomial basis from the

Askey scheme to the probability weight of the underlying random
process. The statistics of the random process are calculated directly
from the coefficients in the polynomial chaos expansion (PCE). The
PCE coefficients can be determined using one of two ways. The first
is the intrusive approach. Here the random process is replaced
explicitly in the governing equations with a PCE. A Bubnov–
Galerkin projection is then performed yielding a set of coupled
equations for the coefficients, see Ghanem (1999) for a complete
description. The second is the non-intrusive approach which is per-
formed either by projection (Xiu, 2010) or regression (Berveiller
et al., 2006). The non-intrusive approach is the method we adopt
here since it requires no modification to existing modelling codes.
In the non-intrusive approach the PCE is computed by strategically
sampling the space of all the uncertain inputs in a similar manner
to Monte Carlo approaches but at prescribed collocation points in
stochastic space.

The number of polynomials, Np, in a PCE depends upon the
number of random dimensions, M, and the order of the polynomial
expansion, p, as follows:

Np þ 1 ¼ ðM þ pÞ!
M!p!

ð1Þ

As we can see from Eq. (1), the number of terms increases rapidly
with M and p. There are some techniques which a-priori reduce
the number of terms Np. One such method, known as a low rank
set (Blatman, 2009), limits the number of multivariate polynomials
in the expansion. i.e. only bi-variate or tri-variate polynomials
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would be admissible. This approach does not converge to the true
model response as p!1. For example, considering only bi-variate
terms would exclude all tri-variate and higher interactions. Another
method computes a so called hyperbolic set (Blatman, 2009). This
approach restricts the polynomial order p to below a hyperbola
which reduces the growth rate of Np. As p!1 the hyperbolic set
converges to the true response. The success of both of these PCE
construction methods relies upon prior knowledge of the random
process. If the structure of the process is unknown, then these con-
structions may be inefficient.

As we have mentioned, it is the non-intrusive approach that we
adopt in this work. More specifically, we will be using the projection
based approach. Here the random process is projected onto each
polynomial basis in order to calculate the expansion coefficients.
This projection involves an M dimensional integral which is most
commonly performed using a quadrature scheme. The immediate
approach to building a multidimensional quadrature is to use a ten-
sor product of one dimensional quadrature rules. However, this
results in the computational effort increasing exponentially with
M. This exponential dependence was alleviated to some extent by
using a sparse grid construction method (Smolyak, 1963).
However, this approach has no knowledge of the structure of the
function being integrated and may ultimately be inefficient and/or
inaccurate. The sparse grid construction was later generalised by
Gerstner and Griebel (1998, 2003) and combined with an adaptive
strategy which iteratively builds a set of integration points in multi-
dimensions. This generalised construction optimally integrates a
function and can be used to infer its structure. As such, it has been
used by Gilli et al. (2013) to build a sparse polynomial chaos expan-
sion. In this approach the structure of the function inferred by the
adaptive quadrature scheme has been used to calculate the polyno-
mial basis required for each dimension and between combinations
of dimensions.

In the work by Gilli et al. (2013), the number of dimensions of
each sub-grid in the sparse grid construction was increased
iteratively until an error threshold was met. In this work we use
an alternative but analogous procedure known as high dimensional
model representation (HDMR) (Rahman and Xu, 2004; Xu and
Rahman, 2004, 2005; Rabitz et al., 1999; Rabitz and Alis�, 1999;
Chowdhury et al., 2009) to describe the multivariate interactions
in the integrand. The HDMR method is used to capture high dimen-
sional relationships between input and output model parameters
using a hierarchical expansion of increasing dimension. If the coop-
erative effect of many input parameters upon the output is weak
then the HDMR provides a very efficient representation of the sys-
tem response allowing the integrand to be expressed using only
low order component functions.

For some engineering applications (Rabitz and Alis�, 1999) it is
stated that component functions of order 3 or greater are negligible
but this is obviously problem dependent. To tailor the truncation of
the HDMR expansion to specific problems, adaptive strategies have
been used (Yang et al., 2012). The adaptive cut-HDMR expansion
has also been used for problems with a discontinuous response
function (Ma and Zabaras, 2010) where an adaptive sparse-grid
quadrature method was used to compute the HDMR component
functions. The adaptive quadrature method used a local hierarchi-
cal basis combined with the Smolyak algorithm. The statistical
moments were calculated directly from quadrature hence the solu-
tion was not projected onto a polynomial chaos basis.

In summary, the objectives of this work are to use an adaptive
HDMR technique to identify all of the important dimensions and
interactions that contribute to the uncertainty in keff . The compo-
nent functions in the HDMR expansion will be evaluated using
an adaptive quadrature rule. This will in turn be used to indicate
the order of polynomial basis required in the construction of a

PCE. The aim of combining these three techniques is to build a
sparse PCE in M dimensions that accurately represents the uncer-
tainty in keff whilst minimising the number of model evaluations
in the non-intrusive approach.

2. Description of the problem

In this work we are concerned with determining the uncertain-
ty in the calculation of keff due to the presence of uncertainties in
the input nuclear data. The calculation of keff involves the solution
of an eigenvalue problem; the eigenvector in this case describes
the distribution of neutrons in space, angle and energy. As such,
appropriate discretisations of the space, angle and energy variables
must be performed for the problem to be amenable to numerical
solution. The energy variable is discretised using the multi-group
technique (Lewis, 1993) and upon application of this, the eigenval-
ue problem for keff is written as (Hébert, 2009)

X �rwgðr;XÞþRtgðrÞwgðr;XÞ¼
Z

4p
dX0

XNG

h¼1

Rs;h!gðr;X0 !XÞwhðr;X0Þ

þ
vg

4pkeff

Z
4p

dX0
XNG

h¼1
mRf ;hðrÞwhðr;X0Þ

g¼1;NG ð2Þ

where

� X is the direction of neutron travel.
� r the spatial position of the neutron.
� wg is the angular neutron flux in group g.
� Rt;g and Rf ;g are the total and fission macroscopic cross sections

in group g respectively. Rs;h!g is the differential macroscopic
scattering neutron cross section from group h into group g.
� m is the average number of neutrons produced per fission and is

expressed by

m ¼ mp þ
X

i

mi;d

where mp is the average number of prompt neutrons produced
per fission and mi;d is the average number of delayed neutrons
from delayed precursor group i produced per fission.
� v is the steady state fission spectrum and is expressed as

v ¼ 1�
X

i

bi

" #
vp þ

X
i

bivi;d

where bi is the fraction of fission neutrons emanating from
delayed precursor group i;vp is the prompt neutron fission
spectrum and vi;d is the delayed fission spectrum from precursor
group i.

The deterministic nuclear criticality (keff ) calculations have
been performed using a code based upon the second-order
even-parity form of the neutron transport equation. This code is
called EVENT and employs a geometry conforming finite element
discretisation of the spatial domain and rotationally invariant
spherical harmonic basis for discretising the angular domain (de
Oliveira, 1986).

To model the uncertainties present in the nuclear data,
the variation is represented parametrically using a set of
independent, identically distributed (IID) random variables
nðhÞ ¼ n1ðhÞ; n2ðhÞ; . . . ; nMðhÞf g. Here h is a random event belonging
to the probability space of n and M is the total number of stochas-
tic/random dimensions in the problem. In this work it is assumed
that the uncertainties are in the microscopic neutron cross-section
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