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a b s t r a c t

Xenon induced spatial oscillations developed in large nuclear reactors, like Advanced Heavy Water Reac-
tor (AHWR) need to be controlled for safe operation. Otherwise, a serious situation may arise in which
different regions of the core may undergo variations in neutron flux in opposite phase. If these oscilla-
tions are left uncontrolled, the power density and rate of change of power at some locations in the reactor
core may exceed their respective thermal limits, resulting in fuel failure. In this paper, a state feedback
based control strategy is investigated for spatial control of AHWR. The nonlinear model of AHWR
including xenon and iodine dynamics is characterized by 90 states, 5 inputs and 18 outputs. The linear
model of AHWR, obtained by linearizing the nonlinear equations is found to be highly ill-conditioned.
This higher order model of AHWR is first decomposed into two comparatively lower order subsystems,
namely, 73rd order ‘slow’ subsystem and 17th order ‘fast’ subsystem using two-stage decomposition.
Composite control law is then derived from individual subsystem feedback controls and applied to the
vectorized nonlinear model of AHWR. Through the dynamic simulations it is observed that the controller
is able to suppress xenon induced spatial oscillations developed in AHWR and the overall performance is
found to be satisfactory.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The analysis and control of large scale systems has always been
a complicated task due to high order nature and interacting
dynamic phenomena of widely different speeds, which gives rise
to time-scales. Such systems are extensively studied in control the-
ory by singular perturbations and time-scale methods. Excellent
survey of control theory applications of singular perturbations is
given by Kokotovic et al. (1976). Another survey on singular per-
turbation in modeling, analysis and design of nonlinear, stochastic
and large scale decentralized system is presented by Saksena et al.
(1984). Singular perturbation methods have successfully been used
in control application to deal with large scale system, by which the
system is decoupled into ‘slow’ and ‘fast’ subsystems (Kokotovic
et al., 1976). These methods work by decoupling the slow and fast
varying phenomena, which leads to model order reduction. This
decoupling is achieved either by quasi-steady-state method
(Gajic and Lim, 2001) or direct block diagonalization (Naidu,
1988; Ladde and Siljak, 1983). The quasi-steady-state method is

an effective method for decoupling a large order system into slow
and fast subsystems for sufficiently small perturbation parameter
�. However, for real systems, like nuclear reactor the perturbation
parameter is not zero. As a result, when using quasi-steady-state
method the eigenvalues of the slow and fast subsystems are no
longer in the same position as the eigenvalues of the full order sys-
tem. To overcome this, block-diagonalization procedure (Phillips,
1980; Naidu, 1988) can be employed. In this method, exact decou-
pling is achieved. Feedback control designs for such systems may
then proceed for each subsystem and the results are combined to
yield a ‘‘composite’’ feedback control for the original system.
The cases of state feedback control are treated in Chow and
Kokotovic (1984), Phillips (1980), Saberi and Khalil (1985), and
Suzuki (1981). Chow and Kokotovic (Chow and Kokotovic, 1984)
have developed the procedure for linear systems and applied it
to linear quadratic optimal designs. A cost functional, extracted
from the cost functional for the full system, is associated with each
subsystem. They have also shown that the composite state feed-
back control is stabilizing and near-optimal with the optimal cost.
Suzuki (1981) has shown that controllability and stabilizability
properties of the slow subsystem are invariant with respect to
the feedback from fast state variables. This property is further
explored by Saberi and Khalil (1985). They showed that the closed
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loop slow subsystem is invariant with respect to any feedback
function which preserves the equilibrium of the fast subsystem
as an isolated equilibrium of fast subsystem obtained with � ¼ 0.
Further, two-stage eigenvalue placement via explicitly invertible
transformation is suggested by Phillips (1980).

In the context of power distribution control in large nuclear
reactors, like Advanced Heavy Water Reactor (AHWR) and Pressur-
ized Heavy Water Reactor (PHWR), it is worth mentioning that the
models of these reactors belong to singularly perturbed systems.
These reactors exhibit slow as well as fast varying dynamical
modes, which causes ill-conditioning of the problem. Moreover,
the physical dimensions of these reactors are large compared to
neutron migration length. Hence, they are susceptible to xenon
induced spatial oscillations. Spatial oscillations in neutron flux dis-
tribution resulting from xenon reactivity feedback are a matter of
concern in large nuclear reactors. If the spatial oscillations in
power distribution are not controlled, power density and rate of
change of power at some locations in the reactor core may exceed
limits of fuel failure (Duderstadt and Hamilton, 1975). Spatial con-
trol means to suppress xenon oscillations from growing. Control of
xenon oscillations developed in AHWR has been attempted by
Shimjith et al. (2011a), Munje et al. (2014a) using static output
feedback technique. However, static output feedback does not
guarantee stability of closed loop system. As an extension to this,
a state feedback based two-time-scale approach for PHWR is given
by Tiwari et al. (1996) and three-time-scale approach for AHWR is
presented by Shimjith et al. (2011b). In these, quasi-steady-state
method is used to decouple the higher order system into lower
order subsystems. Nevertheless, the practical implementation of
such a state feedback based controller demands a state observer
of large order. Hence, a linear observer has been suggested for
PHWR in Tiwari and Bandyopadhyay (1998). Further, the observer
based design increases the implementation cost and reduces the
reliability of the control system. To overcome this, a three-
time-scale based Fast Output Sampling (FOS) controller is investi-
gated in Shimjith et al. (2011c). A similar kind of approach for
two-time-scale system is also suggested by Munje et al. (2013a)
for AHWR system. In FOS, control signal is generated as a linear
combination of a number of output samples collected in one
sampling interval, where input sampling time is larger compared

to output. For example in Shimjith et al. (2011c), sampling time
for spatial control component of input is taken as 60 s and in
Munje et al. (2013a) it is taken as 54 s. However, for practical reac-
tor control to work with larger sampling time is not desirable,
because in small time, reactor system can undergo a considerable
change. Hence, Periodic Output Feedback (POF) based controller
for three-time-scale system of AHWR is presented in Munje et al.
(2014b) with sampling period of 2 s. A two-time-scale decomposi-
tion approach using POF is documented in Patre et al. (1997),
Tiwari et al. (2000). These multirate output feedback based con-
trollers (i.e. FOS and POF) have their own advantages, but they lack
robustness. Moreover, these methods may not work satisfactorily
in the presence of disturbance, parameter variations and perturba-
tions in the operating conditions. Recently, Munje et al. (2013b)
have explored state feedback based robust Sliding Mode Control
(SMC) technique to AHWR and it is shown that, better results are
obtained compared to other control techniques. Furthermore, a
single-input fuzzy logic controller (Londhe et al., 2014) is also
proposed for spatial control of AHWR.

In this paper, singularly perturbed structure of Advanced Heavy
Water Reactor is exploited, to decouple it into a slow subsystem of
73rd order and fast subsystem of 17th order, using the method of
Phillips (1980) and a composite controller is designed for suppress-
ing xenon induced spatial oscillations. In contrast to the earlier
work of Shimjith et al. (2011b), where quasi-steady-state method
was used to obtain three subsystems, this two-stage decomposi-
tion method provides higher degree of accuracy. Moreover, the
comparison of results, helps to understand the effect of different
model order reduction methods. Organization of the paper is as fol-
lows. In Section 2 brief overview of AHWR system is given. Control
design is proposed in Section 3. In Section 4 application to AHWR
system is presented followed by conclusion in Section 5.

2. Overview of AHWR

2.1. Introduction

In India, Advanced Heavy Water Reactor, a 920 MW (thermal),
vertical pressure tube type reactor has been designed. It is
moderated by heavy water, cooled by boiling light water and

Nomenclature

Notations
C precursor concentration
a coupling coefficient
Eeff thermal energy liberated/fission, J
b delayed neutron fraction
En identity matrix of dimension n
c fraction fission yield
H position of regulating rod, % in
k Decay constant
I iodine concentration
‘ the prompt neutron life-time, s
P fission power, W
q reactivity, k
V volume, m3

ra microscopic absorption cross-section, cm2

X xenon concentration
Ra macroscopic absorption cross-section, cm�1

h enthalpy, kJ/kg
Rf macroscopic fission cross-section, cm�1

q mass flow rate, kg/s
j constant of regulating rod position

v voltage signal to RR drive, V
d deviation parameter
x exit mass quality
u eigenvalue

Subscripts
C precursor
f fast, feed water, fission
H position of regulating rod
i; j node number
I iodine
k regulating rod number
P power
s slow, steam
X xenon
w water
c vaporization
gp global power
d downcomer
sp spatial power
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