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a b s t r a c t

We present a method for deriving homogeneous multi-group cross sections to replace a heterogeneous
region’s multi-group cross sections; providing that the fluxes, the currents on the external boundary,
the reaction rates and the integral of the fluxes are preserved. We consider one-dimensional geometries:
a symmetric slab and a homogeneous cylinder. Assuming that the boundary fluxes are given, two
response matrices (RMs) can be defined concerning the current and the flux integral. The first one derives
the boundary currents from the boundary fluxes, while the second one derives the flux integrals from the
boundary fluxes. Further RMs can be defined that connects reaction rates to the boundary fluxes. Assum-
ing that these matrices are known, we present formulae that reconstruct the multi-group diffusion cross-
section matrix, the diffusion coefficients and the reaction cross sections in case of one-dimensional (1D)
homogeneous regions. We apply these formulae to 1D heterogeneous regions and thus obtain a homog-
enization method. This method produces such an equivalent homogeneous material, that the fluxes and
the currents on the external boundary, the reaction rates and the integral of the fluxes are preserved for
any boundary fluxes. We carry out the exact derivations in 1D slab and cylindrical geometries. Verifica-
tion computations for the presented homogenization method were performed using two- and four-group
material cross sections, both in a slab and in a cylindrical geometry.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Reactor physics deals with the determination of criticality
parameters and the associated flux- and power distributions in a
composed volume. In order to solve large-scale neutron transport
problems in a reasonable time, a wide range of approximations
and numerical methods have been developed and are under
development. Moreover, one can find even more stringent
conditions in a simulator model, where real-time solution is
needed. One of the most frequently utilized method is the homog-
enization, which is achieved by replacing a heterogeneous
region by a homogeneous one. Selengut (1960) has formulated
the following requirements against an equivalent homogeneous
region: ‘‘If this interchange can take place without distorting the flux
in any way outside the two cells, we shall regard them as equivalent.’’

The present paper gives a recipe for substituting a multi-region
volume by a homogeneous one, so that the group currents and
fluxes at the external boundary, the volume integrated group

fluxes and cross sections remain the same for any given boundary
flux.

The homogenization method presented below is originated
from the inverse problem, which endeavors to determine the mac-
roscopic cross sections of a simple geometry. We provide a given
flux at the boundary of a slab or cylinder and detect the response.
In this respect it is a question, if the measured values allow for
reproducing the cross sections of a homogeneous material in the
volume. In the present work, we discuss the problem in two basic
geometries: in one-dimensional slab and cylinder. Symmetric
boundary conditions are supposed. The materials are described
by multi-group cross sections.

The present work is a part of a research aiming at providing
homogenized cross sections for global reactor calculation with
assemblies comprising a few homogeneous regions. The method
can be extended to 2D geometries, which would increase its
usability.

In Sections 2 and 3 we derive the necessary formulae between
the response matrices and the few-group cross sections in the
frame of the diffusion approximation. In the latter section, we
reproduce the diffusion parameters from the known response
matrices (RMs) in case of a homogeneous region, which is basically
a solution to the inverse problem for a specific case.
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The results of Section 3 are applicable to heterogeneous regions
as well, which is the foundation of our homogenization method,
described in Section 4.

Numerical results of the homogenization method are presented
in Section 5, in which the solution has been obtained for a two-
region problem. Four- and two-group parameters of the homoge-
nized and the composing materials are compared.

2. Multi-group response matrices in a homogeneous region

Consider the multi-group, source-free diffusion equation in a
homogeneous one-dimensional region xl 6 x 6 xr:

� Dg$
2UgðxÞ þ Rr;gUgðxÞ �

X
g0–g

Rg0!gUg0 ðxÞ � vg

XNG

g0¼1

mRfg0Ug0 ðxÞ ¼ 0;

g ¼ 1;2; . . . ;NG: ð1Þ

Here NG is the number of energy groups and g is the group index; Dg

is the diffusion coefficient in group g; Rr;g is the removal cross sec-
tion in group g; Rg0!g is the scattering cross section from group g0 to
g; vg is the fission spectrum; mRf ;g is the neutron production cross
section by fission in group g and UgðxÞ is the scalar neutron flux
at x in group g. In the foregoing discussion the material in the region
is described by its cross sections. The 1D region is either a slab or a
cylinder in our case.1 We only deal with subcritical regions.

The equation above can be written in the following condensed
form:

$2UðxÞ þ D�1RUðxÞ ¼ 0; ð2Þ

where D is an NG order diagonal matrix containing the diffusion
coefficients and R is the multi-group cross-section matrix of the
same order. The elements of R can be calculated from the few-group
cross sections: Rgg0 ¼ �dgg0Rr;g þ ð1� dgg0 ÞRg0!g þ vgmRf ;g0 (the diago-
nal and off-diagonal elements of D�1R are positive and negative,
respectively). In a homogeneous region, the analytical solution of
Eq. (2) is the linear combination of the eigenvectors of D�1R and
the corresponding eigenfunctions of the Laplacian:

UðxÞ ¼ ThKðBgxÞicþ ThLðBgxÞid; ð3Þ

where c and d are constant vectors of Ng elements,2 matrix T is com-
posed of the eigenvectors (tg) of D�1R, Bg is the eigenvalue of the
Laplace operator, K and L are the even and odd eigenfunctions of
the Laplace operator, respectively. The diagonal matrices of NG order
are denoted in angle brackets:

hKðBgxÞi ¼

KðB1 � xÞ 0 � � � 0
0 KðB2 � xÞ � � � 0

..

. ..
. . .

. ..
.

0 0 � � � KðBNG � xÞ

2
66664

3
77775: ð4Þ

The eigenpairs B2
g and tg are determined by the material parameters

of the diffusion equation (2):

D�1Rtg ¼ B2
g tg ; g ¼ 1;2; . . . ;NG: ð5Þ

The boundary values determine c and d.
Let the boundary condition be symmetric, then

UðxlÞ ¼ UðxrÞ ¼ Ul. In this case, only the even part of the solution
is kept

UðxÞ ¼ ThKðBgxÞic: ð6Þ

To eliminate c from the previous equation, we can write

c ¼ hKðBgxlÞi�1T�1Ul; ð7Þ

supposing that T is invertible. This assumption restricts the
cross-section matrix of a homogeneous region, see Appendix B for
more details. Substituting c into the expression of the flux gives

UðxÞ ¼ ThKðBgxÞihKðBgxlÞi�1T�1Ul ¼ T
KðBgxÞ
KðBgxlÞ

� �
T�1Ul: ð8Þ

The net neutron current is defined as

JðxÞ ¼ �D
dUðxÞ

d
x ¼ �DT

K0ðBgxÞ
KðBgxlÞ

� �
T�1Ul; ð9Þ

where a comma denotes the derivative. The even eigenfunctions (K)
of the Laplace operator are the cosine function and the Bessel
function of the first kind (J0) in slab and cylindrical geometries,
respectively. We present the derivations in the aforementioned
geometries.

We basically utilize two RMs: RC that determines the net neu-
tron current (J) at the boundary from Ul, and RF that determines
the volume integral of the neutron flux U ¼

R xl
0 UðxÞdx

� �
from Ul.

We have therefore the following definitions:

Jl ¼ RCUl; ð10Þ
U ¼ RFUl: ð11Þ

Considering the symmetric 1D homogeneous region described in
the beginning of this section, the first response matrix can be
expressed from the right hand side of Eq. (9) as:

RC ¼ �DT
K0ðBgxlÞ
KðBgxlÞ

� �
T�1: ð12Þ

Integrating the expression of the flux in Eq. (8):

U ¼
Z xl

0
UðxÞdx ¼ T

1
KðBgxlÞ

Z xl

0
KðBgxÞdx

� �
T�1Ul

¼ T
HðBgÞ
KðBgxlÞ

� �
T�1Ul; ð13Þ

where HðBgÞ ¼
R xl

0 KðBgxÞdx. Comparing Eqs. (13) and (11) gives the
second response matrix

RF ¼ T
HðBgÞ
KðBgxlÞ

� �
T�1: ð14Þ

Substituting the corresponding eigenfunctions of the Laplacian into
K; K0 and H in the above expressions yields the flux, current and
the RMs in case of the slab and cylindrical geometries.

Further response matrices can be utilized to describe the reac-
tion rates. Consider an arbitrary reaction m, characterized by its
few group cross-section matrix Rm, which is constant over the
homogeneous region. The connection between the reaction rate
of m over the region and the boundary flux is

RmU ¼ RmUl: ð15Þ

Expressing the left hand side of the previous equation with the use
of Eq. (14) gives

RmU¼
Z xl

0
RmUðxÞdx¼RmU¼RmT

HðBgÞ
KðBgxlÞ

� �
T�1Ul¼RmRFUl; ð16Þ

and thus the RM of a reaction m can be written as

Rm ¼ RmRF : ð17Þ

1 A derivation, similar to the one given below, can also be given for 1D spherical
geometry.

2 Bold letters indicate vectors or matrices. The fluxes, currents are collected into
vectors by energy groups.
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