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a b s t r a c t

A computer code based on Method of Characteristics (MOC) is developed to solve neutron transport equa-
tion for mainly assembly level lattice calculation with reflective and periodic boundary conditions and to
some extent core level calculation with vacuum boundary condition. The code is able to simulate square,
circular and hexagonal geometries and their combinations. Delaunay triangulation together with the
Bower–Watson algorithm is used to divide the problem geometry into triangular meshes. Ray tracing
technique is developed to draw characteristics lines along different directions over the geometry and
the transport equation is solved over these lines to obtain neutron flux distribution and multiplication
factor for the geometry. A number of benchmark problems available in literature are analyzed to
demonstrate the capability and validity of the code.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The first step in traditional, deterministic reactor physics anal-
ysis of nuclear reactors is lattice calculation, in which the neutron
transport equation is solved within a representative region of the
reactor, called the lattice cell. This provides fine mesh and fine
group flux distribution in the lattice cell, which is used to calculate
few group homogenized cross sections for core calculations. In ear-
lier days the representative region used to be a ‘pin cell’, consisting
of a single fuel rod and associated moderator, with reflective
boundary conditions. The outer boundary was often converted
from square (or hexagonal) to circular, to further simplify the
geometry to that of a one dimensional problem. Due to the pres-
ence of heterogeneities such as control rods, water gaps or water
rods, the lattice is not exactly periodic. Various corrections such
as the use of a ‘white boundary’ instead of reflective and the use
of a ‘supercell’, which includes a homogenized mixture of fuel
and moderator to represent the spectrum external to the lattice
cell, had to be included to get satisfactory results. An intermediate
assembly calculation based on diffusion theory, using the homog-
enized and group condensed cross sections, was performed to
obtain the homogenized assembly cross sections for the fuel
assembly. Examples of the use of such methods are MURLI
(Huria, 1978, 1984), EXCEL (Thilagam et al., 2009) and the
LEOPARD–PDQ combination (Fujita et al., 1978).

Since seventies and early eighties, computer codes were devel-
oped for doing lattice calculations at the fuel assembly level
directly. The integral transport theory using either the collision
probability, the interface current or a combination of these meth-
ods (Tsuchihashi, 1970; Fayers et al., 1972; Janssen and Caspers,
1973, Janssen et al., 1974; Degweker, 1985) was popular for treat-
ing the complex geometries involved. The method has the added
advantage that it can be formulated in terms of only the scalar flux,
since the scattering anisotropy plays only a minor role and can be
corrected by the use of transport cross sections.

Due to the phenomenal increase in computing power in recent
years, there have been attempts at developing computational
methods for solving the transport equation directly in full reactor
core i.e. without the need for a separate lattice calculation for
obtaining homogenized cross sections. The Method of Characteris-
tics, commonly abbreviated as MOC (Askew, 1972; Hong and Cho,
1998; Chen et al., 2008; Sanchez, 2012; Yang and Satvat, 2012),
seems to offer such a possibility. Several lattice level codes have
incorporated the MOC as a method of solving the multigroup trans-
port equation examples being DRAGON (Marleau et al., 2008),
CASMO-4 (Smith and Rhodes, 2000) and CASMO-5 (Rhodes et al.,
2006). Its advantages over commonly used methods for transport
theory are (i) the ability to treat complex geometries commonly
encountered in reactor cores, (ii) the ability to produce detailed
flux and power distribution over the region of solution, (iii) the
ability to handle anisotropic scattering and (iv) the ability to obtain
solution in neutronically large sized domains. Commonly used
methods viz. the collision probability method, the DSn method
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and the Monte Carlo method suffer from one or more of the above
problems ((i) for DSn, (ii) for Monte Carlo, (iii) and (iv) for Collision
probability). For these reasons the MOC is gaining popularity for
not only lattice calculations but also for whole core calculations
without homogenization.

A prerequisite for solving the transport equation by the MOC is
the division of the problem domain into small meshes. Another
prerequisite is the construction of a sufficiently large number of
characteristic lines or rays, along which the transport equation is
solved. The traditional way to divide the geometry into meshes is
to divide the assembly into square or hexagonal cells of the lattice
structure and to carry out further sub division of the cells into
radial and azimuthal zones. This is the approach followed in
Degweker (1985) and Ray and Degweker (2013). While it gives
the user the freedom to choose the manner of division, it makes
the preparation of the input more cumbersome.

In the present paper, we describe the development of the first
phase of a code based on the MOC using an automatic procedure
for mesh division based on the Delaunay triangulation technique
along with the Bowyer–Watson algorithm. Presently the solution
domain can be typical square or hexagonal fuel assemblies of
PWRs, BWRs or VVERs. The ray tracing is carried out with the help
of elementary coordinate geometry. The paper is organized as fol-
lows: The Method of Characteristics for solving the transport equa-
tion is described in Section 2. The mesh generation and ray tracing
procedures are described in Section 3. In Section 4, we present the
results of our calculations for a number of benchmark problems.
Finally we present our conclusions.

2. Solution of neutron transport equation by MOC

The neutron transport equation is an integro-differential equa-
tion which describes the distribution of neutron angular flux (W)
as a function of space (r), angle (X), energy (E) and time (t) in reac-
tor core. Since our interest is in steady state (mostly ‘‘k’’ eigen-
value) problems, for the present purpose, the steady state
neutron transport equation is written below:bX � r!Wg r!; bX� �

þ Rt
g r!
� �

Wg r!; bX� �
¼ Q g r!; bX� �

ð1Þ

g is energy group corresponding to energy E, Rg
t is g-th group total

(absorption and scattering) macroscopic cross section and Qg is g-th
group total neutron source including fission source, scattering
source and external source, if any. The source is related to the angu-
lar flux by the relations:

Q g r!; bX� �
¼ Q ext

g r!; bX� �
þ
XG

g0¼1

Z
4p

vgmRfg0 ð r!Þ
�

þRsg0!g r!; bX0 � bX� ��
Wg0 r!; bX0� �

dbX0 ð2aÞ

for the problem with an external source Qg
ext and

Q g r!; bX� �
¼
XG

g0¼1

Z
4p

vgmRfg0 r!
� �

k
þ Rsg0!g r!; bX0 � bX� �0@ 1A

�Wg0 r!; bX0� �
dbX 0 ð2bÞ

for the k eigenvalue problem.
where Rsg0 ? g is macroscopic scattering cross section from

group g0 to group g, vg is g-th group fission spectrum, m is average
number of neutrons released per fission and Rfg is g-th group mac-
roscopic fission cross section. Applying the Method of Characteris-
tics (MOC), Eq. (1) is converted into a linear ordinary differential
equation (Bell and Glasstone, 1979).

d
ds

Wg r0
!þ sbX; bX� �

þ Rt
g r0
!þ sbX� �

Wg r0
!þ sbX; bX� �

¼ Q g r0
!þ sbX; bX� �

ð3Þ

The characteristics in this case are straight lines – essentially the
collision free flight paths of the neutrons – whose equations are
given by r!¼ r0

!þ sbX where s is distance measured along bX direc-
tion from r0

!which is an arbitrary starting point on the characteris-
tic line. By varying the coordinates of r0

! a set of lines parallel to the
direction vector bX (in 3-dimensional space) is obtained. Changing bX
gives another set of parallel lines with a different orientation. Eq. (3)
can be solved along any of these lines, provided an initial value of
the angular flux and the source distribution are known. The prob-
lem domain is divided into meshes having uniform material compo-
sition within each mesh. If we further assume that the flux variation
within a mesh is small, we can take the source to be uniformly dis-
tributed (flat) within a mesh. It is then easy to write the following
solution of Eq. (3) for a mesh i and direction j:

Wi;j;gðsÞ ¼ Win
i;j;ge�Ri;g s þ

Qi;g

Ri;g
1� e�Ri;g s
� �

ð4Þ

where Qi,g is the flat source in mesh i and group g. This gives us the
following equation for the outgoing angular flux i.e. the flux at the
end of a segment intercepted by the mesh boundary.

Wout
i;j;g ¼ Win

i;j;ge�Ri;gDt þ
Q i;g

Ri;g
1� e�Ri;gDt
� �

ð5Þ

Dt is length of the segment along direction j, in mesh i as shown in
Fig. 1. The average angular flux for the given characteristic in mesh i
for the direction j is:

Wi;j;g ¼
Qi;g

Ri;g
þ

Win
i;j;g �Wout

i;j;g

Ri;gDt
ð6Þ

What is required for calculating the source Qi,g (as well as the
reaction rates) are the scalar flux and (in case of anisotropic scat-
tering) other moments of the angular flux. This is obtained by first
averaging the above expression over all characteristics parallel to
the direction bX and passing through the mesh i. This is the average
angular flux for direction j and mesh i. This must be then integrated
over all directions to get the scalar flux.

In practice, we can obtain numerical values of the average angu-
lar flux only over a finite number of suitably chosen directions and
over a finite number of characteristic lines in a given direction. The
choice may be dictated by several considerations. For example one
may choose the directions from the well known fully symmetric
quadrature set used in the Sn method or some other set. Since
our geometry is two dimensional, being uniform and infinite in
the z direction, we choose a plane perpendicular to the z direction
on which the lines are drawn. These lines are projections of the
actual (3-D) characteristics. The orientation (hk, uj) of the charac-
teristics is defined by a finite set of polar angles hk and azimuthal
angles uj which is closed under reflection. The former are chosen
such that lk = coshk are points of a Gaussian quadrature set while
the latter are uniformly distributed in the interval [0,2p]. For a
given uj, (all the projections corresponding to different hk are com-
mon) in a plane we use a set of equally spaced lines which form the
projections of the characteristics. The intercepts are calculated for
the projected lines on the plane. Then they are converted into
actual intercepts of the characteristics by dividing by sinhk.

If n is index number of the parallel lines passing through i-th
mesh along direction (j,k), then an angular flux, averaged over all
those lines with a weighting factor equals to the product of chord
lengths (Dt) and separation between two consecutive parallel lines
(Dw), can be defined as below:
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