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a b s t r a c t

The calculation of the time-dependent extinction probability (EP) in an infinite medium of fissile material
is calculated including delayed neutrons. This extension of the model reveals some interesting conse-
quences, one of which is the appearance of an initial plateau in the EP in the range 10�6 to 10�4 s which
is significantly less than the final asymptotic plateau value reached as time tends to infinity; i.e. the
steady state EP. This steady state is delayed by the presence of the delayed neutrons by a time of the order
of 3/k (�36 s) where k is the mean decay constant of the precursors. The presence of the initial plateau is
due specifically to delayed neutrons and has not been commented on before. Several other situations are
considered, with differing initial conditions, and are illustrated by numerical results.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

A large body of work exists on the extinction probability (EP)
of a neutron chain reaction in a supercritical medium (Pázsit
and Pál, 2008; Harris, 1963; Bell, 1963). Without exception, how-
ever, the quantitative influence of delayed neutrons has been
neglected. That is not to say that the associated theory for includ-
ing delayed neutrons in the EP has not been derived, but simply
that no calculations have been carried out to study the practical
significance of this effect. In this note we will set out the relevant
equations for the EP, describe a method for solving them numer-
ically and discuss the implications of the numerical results. For
greater generality we will consider the time-dependent behaviour
as well as the asymptotic limit for large times. It will be shown
that a number of interesting and very practical consequences arise
in the presence of delayed neutrons, especially when the reactiv-
ity is close to prompt critical. The calculations will be based on a
point model system but the extension to a space-dependent prob-
lem is straightforward and follows the work of Williams (2004,
2008).

An important feature of the presence of delayed neutrons is the
effect on the time behaviour of the EP. Subject to the initial state of
one neutron and no precursors, this is seen to increase rapidly with
a time constant associated with that of prompt neutrons and level

off to a plateau. Normally, with no delayed neutrons, one would
consider this plateau to be the asymptotic state and hence the
maximum value of the EP. However, if we wait a further time,
corresponding to about three times the average delayed neutron
lifetime (�36 s), then the extinction probability increases again
to a second and final plateau which is the desired asymptotic limit.
Thus by ignoring delayed neutrons we fail to account for the initial
EP which is substantially lower than the final asymptotic state and
exists for about one second.

2. General theory

The essential theory for this problem may be found in the refer-
ences cited above for the generating functions which fully define
the associated probabilities of having n neutrons and ni, i = 1. . .I
delayed neutron precursors being present at a given time, due to
either one starting neutron, or one delayed neutron precursor at
time t = 0. Let us briefly discuss the background theory by first
defining the probability

p½nðtÞ ¼ n;n1ðtÞ ¼ n1;n2ðtÞ ¼ n2; . . . nIðtÞ ¼ nIjnð0Þ ¼ 1;
n1ðtÞ ¼ 0;n2ðtÞ ¼ 0; . . . nIðtÞ ¼ 0� ð1Þ

This assumes that initially, at t = 0, there is one neutron in the sys-
tem and no precursors. Similarly,

p½nðtÞ ¼ n;n1ðtÞ ¼ n1;n2ðtÞ ¼ n2; . . . nIðtÞ ¼ nIjnð0Þ ¼ 0;
n1ðtÞ ¼ 1;n2ðtÞ ¼ 0; . . . nIðtÞ ¼ 0� ð2Þ
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assumes that initially, at t = 0, there are no neutrons in the system
and one precursor of type 1. Various initial conditions may be
defined in this way. The above notations can be shortened to p(n,
n1, . . .nI|1, 0, . . .0), etc.

A backward-type master equation for the p(n, n1, . . .nI|1, 0, . . .0)
can be derived as follows (Pázsit and Pál, 2008):
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where the definitions of n0 � n and k0 � k are used when applicable.
The equations for the p(n, n1, . . .nl|0, 1, . . .0) etc., i.e. when the

process was started by having one single delayed neutron precur-
sor in the system, read as

pðn;n1; . . . nI; tj0;1;0; ::0Þ ¼ dn;0dn1 ;1dn2 ;0 . . . dnI ;0e�k1t

þk1
R t

0 dt0e�k1ðt�t0 Þpðn;n1; . . . nI; t0j1;0; 0; ::0Þ

pðn;n1; . . . nI; tj0;0;1; ::0Þ ¼ dn;0dn1 ;0dn2 ;1 . . . dnI ;0e�k2t
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The generating function associated with the above probabilities
is

gðz; z1; . . . zI; tj1;0; . . . 0Þ ¼
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In Pázsit and Pál (2008) it is shown that the balance equation for
this generating function is

gðz;z1; . . .zI;tj1;0; . . .0Þ¼ ze�kt tþkt
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where kt is the total interaction intensity including absorption,
fission and scattering, and
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where ki are the delayed neutron precursor decay constants and the
generating function q[z, z1, . . .zI] is given by

q½z; z1; . . . zI� ¼
X1
k¼0

X1
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. . .
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kI¼0
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with f(k, k1, . . .kI) being the probability that k prompt neutrons and
k1, k2, . . .kI delayed neutron precursors are born in one reaction. We
will discuss the general form of f(k, k1, . . .kI) below. The notation
will be simplified as follows

Gdi
ðz; z; tÞ ¼ gðz; z1; . . . zI; tj0; iÞ and

Gðz; z; tÞ ¼ gðz; z1; . . . zI; tj1;0;0; . . . 0Þ ð7Þ

where the argument i in the delayed neutron symbol denotes the
position of 1 in the conditional statements.

For a quantitative study, the statistics of the branching,
expressed by the generating function q[z, z1, . . .zI] has to be speci-
fied. Since in an energy independent description scattering events
disappear from the probability balance equations, we will consider
that the neutrons can only undergo fission or capture with the cor-
responding intensities kf and kc, with ka = kf + kc being the total
reaction intensity. However, in order to show how this disappear-
ance arises, and for consistency, we include scattering in the
general derivation. The number distribution of neutrons and
delayed neutron precursors in one fission event is described by
the distribution p(k, k1, k2, . . .kI). On physical grounds and in the
absence of evidence to the contrary, it is customary to assume that
the generation of prompt and delayed neutrons are independent
processes, i.e. that p(k, k1, k2, . . .kI) factorises into the product
p(0)(k)p(1)(k1). . .p(I)(kI). The relationship between the two distribu-
tions is then given as

f ðk; k1; . . . kIÞ ¼
kc

kt
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pð0ÞðkÞpð1Þðk1Þ . . . pðIÞðkIÞ ð8Þ

Eq. (8) shows that the distribution of prompt and delayed par-
ticles born per reaction is not factorisable, i.e. the underlying pro-
cesses are not independent. Physically, the reason is that
although in fission the prompt neutron and delayed neutron gener-
ation are independent processes, the same is not true for capture
and scattering since for capture it means that zero prompt neutron
emission will always be accompanied by zero precursor genera-
tion, and for scattering it means that the re-emergence of one neu-
tron from the collision will always be accompanied by zero
precursor generation. This creates a correlation between the pro-
duction of the two particle types. Inserting f(. . .) into the definition
of the generating function leads to

q½G;Gd1;Gd2; . . . GdI� ¼
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or more simply
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