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a b s t r a c t

A space dependent model for the second moment of a stochastic field has been presented. The derivation
procedure is simple and avoids non-physical assumptions for completeness. Moreover, a program has
been developed which obtains the solutions to this equation in the three dimensional space. Two bench-
marks, namely the fissile cube and the subcritical slab, show the accuracy of the results obtained using
this method.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The basic interactions of fundamental particles, e.g. photons
and neutrons, with a media is stochastic in nature. This stochastic
behavior is described by the quantum physical laws (Zettili, 2009)
and is manifest in the interaction cross sections (Berger et al.,
1999; Chadwick et al., 2006), i.e. probability of interaction per unit
length. The cumulative result of these stochastic interactions is a
stochastic field. While a genuine study of nature’s behavior
requires the inspection of the evolution of the probability measure
of this stochastic field throughout space and time, this aim remains
a computational challenge, even for the lowest density fields, for
the near future. As a result, this stochastic field has been studied
with various degrees of accuracy and simplicity. Some of these
works are physically oriented (Huang et al., 2008; Lewins, 1978;
Osborn and Yip, 1966), while others seek mathematical approaches
to gain further simplicity (Allen, 2012; Pázsit and Pál, 2008; Pluta,
1962).

A well-known method in the investigation of stochastic fields is
the study of its moments (Bell, 1969). Substantive work has been
done on the study of the first moment of this stochastic field,
which is widely known as the Boltzmann equation (Altaç and
Tekkalmaz, 2002; Ayyoubzadeh and Vosoughi, 2011;
Chandrasekhar, 2013; Prahl, 1988). While these studies gain
insight into the original field by investigating its average behavior,
they are far from explaining all the measurable quantities of the

field. Hence, it might seem natural to harvest further information
of the field by studying it’s second (and higher order) moments,
i.e. the variance and covariance. As a result, a measurable amount
of work has been directed to the study of these quantities
(Degweker, 1994; Edelmann et al., 1975; Hayes and Allen, 2005;
Muñoz-Cobo et al., 2000; Muñoz-Cobo and Rugama, 2003; Sharp
and Allen, 2000). The well-known Feynman-alpha and Rossi-alpha
methods are notable results of such studies (Ceder and Pázsit,
2003; Otsuka and Iijima, 1965; Pál and Pázsit, 2012; Pázsit and
Pál, 2008; Pázsit and Yamane, 1999).

A considerable share of the investigation of the second order
moments of the stochastic field has been focused on the one point
approximation in which one neglects spatial, i.e. transport, effects.
Furthermore, the inclusion of these effects has been mostly accom-
panied by the backward approach which in our view overshadows
the underlying physics. While forward approach derivations seem
to be available (Degweker, 1994), the complexity of the mathemat-
ical apparatus used in these studies discourages their routine use
by researchers. Moreover, numerical results for these equations
seem scarce.

The current paper is organized in eight sections. In the next sec-
tion, the stochastic process underlying a transport phenomenon is
quantified using a probability measure. The third section investi-
gates the evolution of this measure throughout space and time.
This derivation has been based on a forward approach and differs
from the probability measure evolution equation in (Degweker,
1994) in one term. In section four, the equations governing the first
and second order moments have been derived using the result of
the previous section. The use of the moment generating functional
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method (Degweker, 1994) has been avoided to achieve simplicity.
Furthermore we have refrained from use of questionable assump-
tions, i.e. the extended boundary method, which aid clearness. The
obtained equation differs from (Degweker, 1994) in the source
terms. In section five, a six-dimensional spatial element has been
introduced and the second order evolution equation has been dis-
cretized in this element. In the sixth section, the outline of a pro-
gram developed to solve this equations have been pointed out.
The seventh section includes two numerical benchmarks which
show the compatibility of the results with results obtained from
direct Monte Carlo simulations. Finally, the results are discussed
and improvements have been suggested.

2. The stochastic field

We shall assume each particle in the radiation field to be fully
describable by a point in the phase space X which includes the
position, speed and direction of flight of that particle. One may
readily notice that the phase space points x are embedded in
the field R3 � Rþ � S where R denotes the real numbers space
and S � R3 denotes the unit sphere. Note that by this definition,
X spans the finite volume of the region of interest along with all
the speeds and directions of flight that are possible for the particle
in this region. For the description of the stochastic field, we need
to define a suitable probability measure. In this paper, we shall
use the measure introduced in (Degweker, 1994), specifically the
probability density of having n particles in the phase space, where
the i’th particle position in the phase space is denoted by xi. Note
that the probability of having these particles at infinitesimal
volumes d xi containing each point xi at some time t is obtained
from pn(x1, . . . ,xn;t)dx1 . . . dxn where pn is the defined measure,
i.e. a probability density function. Here, we shall not be concerned
about the technicalities of the probability space under consider-
ation and assume it to be well-defined. Having defined this mea-
sure, the most prominent properties of the stochastic field under
study, namely the mean and covariance could be obtained. To do
so, one may note that the total probability of having one particle
at an infinitesimal volume dx1 containing the point xi is the sum of
having just one particle in the total space, where this particle is in
the infinitesimal volume under study plus the probability of
having more than one particles where one of them is placed in
the desired volume. Showing the probability of having one
particle in this volume by f1(x1;t)dx1, this statement could be
written as

f 1ðx1; tÞdx1 ¼ p1ðx1; tÞdx1

þ
X1
n¼2

dx1

ðn� 1Þ!

Z
x22X

. . .

Z
xn2X

pnðx1; . . . ; xn; tÞdxn . . . dx2: ð1Þ

Now one may note that the mean number of particles in this infin-
itesimal volume could be obtained by

EðNdx1 Þ ¼
X1
n1¼0

n1Prn1 ðx1; tÞðdx1Þn1 ; ð2Þ

where in Eq. (2), E() is to be understood as the expected value oper-
ator, i.e. an operator which gives the mean value of the operand
(Papoulis and Pillai, 2002). Also, Ndx1 is a random variable denoting
the number of particles in the volume dx1 and Prn1 ðx1; tÞ is the prob-
ability density of having n1 particles at x1. Note that while Pr1(x1;t)
is equal to f1(x1;t), we have no information about Prn1 ðx1; tÞ for
n1 > 1. However, using the assumption that dx1 is an infinitesimal
volume one could use Eq. (2) to obtain the mean density of particles
at point x1 as

�nðx1Þ ¼ lim
dx1!0

E
Ndx1

dx1

� �
¼ Pr1ðx1; tÞ ¼ f 1ðx1; tÞ: ð3Þ

One may use a similar argument to obtain the probability of
having one particle inside the infinitesimal volume dx1 and
another particle inside the infinitesimal volume dx2 from the mea-
sure pn as

f 2ðx1; x2; tÞdx1dx2 ¼ p2ðx1; x2; tÞdx1dx2

þ
X1
n¼3

dx1dx2

ðn� 2Þ!

Z
x32X

. . .

Z
xn2X

pnðx1; x2; . . . ; xn; tÞdxn . . . dx3: ð4Þ

Note that the expected value of the number of particles inside d x1

and dx2 could be obtained from

EðNdx1 Ndx2 Þ ¼ f 2ðx1; x2; tÞdx1dx2 þ O dx2
1

� �
dx2 þ O dx2

2

� �
dx1; ð5Þ

where in Eq. (5), O() denotes the order of magnitude of a term.
Using the assumption that dx1 and dx2 are infinitesimal volumes,
Eq. (5) reduces to

lim
dx1!0
dx2!0

EðNdx1 Ndx2 Þ
dx1dx2

¼ f 2ðx1; x2; tÞ: ð6Þ

Here we point out that the covariance of the particle density
between two points in the phase space, which describes the fluctu-
ations of the stochastic field to some degree, is obtained from

covðx1; x2; tÞ ¼ E lim
dx1!0
dx2!0

Ndx1 Ndx2

dx1dx2

0@ 1A� E lim
dx1!0

Ndx1

dx1

� �
E lim

dx2!0

Ndx2

dx2

� �
¼ f 2ðx1; x2; tÞ � f 1ðx1; tÞf 1ðx2; tÞ: ð7Þ

In the next section we shall describe a method for obtaining pn

in a media with known stochastic properties.

3. The probability measure evolution

In this section the probability measure evolution is obtained by
improving the method described in (Degweker, 1994). To obtain
such an equation, we shall assume that the particle interacts with
the media at discrete locations and that the type and cross section
of events, i.e. probability of occurrence per unit length, is as sum-
marized in Table 1.

Note that while Rf ;mðxi ! xf 1
; . . . ; xf m

Þ is mainly used to describe
a fission which yields m-neutron, it could contain other processes
such as the multiple-photon emission process (Albota et al., 1998;
Xu and Webb, 1996) in the optical realm. Also, it has been assumed
that an external source is placed at xi which emits de-correlated
particles one at a time with a constant probability S(xi)dt. Now,
by assuming pn(x1, . . . ,xn;t) to be known, at an infinitesimal later
time t + dt one may write

Table 1
Probability of various interactions for the particle with the surrounding media.

Type of interaction Probability of occurrence per unit length

Particle scattering
from xi to xf

Rs(xi ? xf)

Particle capture at xi Rc(xi)
Particle absorbed at

xi to yield m new
particles at
fxf 1

; . . . ; xf m
g

Rf ;mðxi ! xf 1
; . . . ; xf m

Þ

Particle escape from
boundary

1; If particle is on boundary and flying outwards
0; Otherwise

�
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