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a b s t r a c t

In this paper, an explicit numerical method, called the appropriate basis function method, is presented.
The explicit appropriate basis function method differs from the power series method because it employs
an appropriate basis function such as the exponential function, or periodic function, other than a polyno-
mial, to obtain approximate numerical solutions. The method is successful and effective for the numerical
solution of the first order ordinary differential equations. Two examples are presented to show the ability
of the method for dealing with linear and nonlinear systems of differential equations.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Numerous works have been focusing on the development of
more advanced and efficient methods for solving ordinary
differential equations (ODEs) (Butcher, 2000; Hajmohammadi
et al., 2012, 2014a). For example, Wazwaz (2010) presented a
new algorithm for solving in ODE’s of integro–differential type,
and Hajmohammadi and Nourazar (2014b, c) presented a new
algorithm for solving in ODE’s of eigen-value type based on
semi-analytical method and pure-analytical method for solving
in ODE’s of non-linear type, respectively. Implicit numerical meth-
ods are usually used for solving ordinary differential equations, in
particular for some stiff problems, in which the implicitness will
cause the method very involved compared to explicit methods
(Li et al., 2009; Zhu et al., 2012). Indeed, explicit numerical meth-
ods require smaller step sizes in situations where implicit methods
would not. It should be emphasized that explicit methods also
show important advantages, some authors have developed many
explicit methods for stiff systems (Guzel and Bayram, 2005).

There has been a great deal of research that focused on elimi-
nating the stiffness problem of reactor kinetics (Koclas et al.,
1996; Chen et al., 2013). And there are several methods especially
adapted for solving the initial value problems for stiff systems of

ordinary differential equations (Aboanber and Hamada, 2003;
Aboanber, 2004; Tashakor et al., 2010). Among the methods are
numerical integration using Simpson’s rule, finite element method,
Runge–Kutta procedures, quasi-static method, piecewise polyno-
mial approach and other methods (Li et al., 2010; Abdallah and
Nahla, 2011; Hamada, 2013). Most of these methods are successful
in some specific problems, but still suffer, more or less, from disad-
vantages as mentioned by Chen et al., 2013.

In this paper, an explicit numerical method for stiff systems is
developed and tested. The method differs from the power series
method (Guzel and Bayram, 2005) in the idea that employs an
appropriate basis function, such as the exponential function,
periodic function, and so on, other than a polynomial to obtain
approximate numerical solutions. In the other hand, the method
is considerably more accurate than the power series method, as
demonstrated in following sections.

2. Appropriate basis function method

2.1. Basic ideas

Since every ordinary differential equation with order n can be
written as a system consisting of n ordinary differential equations
with order one, our study is restricted to a system of first order
differential equations, which can be written as follows

y0 ¼ f ðt; yÞ; t 2 ½0; T�; kyk < þ1;
yð0Þ ¼ y0;

ð1Þ
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whose theoretical solution is y(t). Let yn be an approximation to
y(tn). Here

y ¼ ½y1; y2; . . . ; yk�
T
;

f ¼ ½f 1; f 2; . . . ; f k�
T
;

and

y0 ¼ ½y01; y02; . . . ; y0k�
T
:

It is assumed that f and y are sufficient differentiability (Guzel and
Bayram, 2005). The power series method (Guzel and Bayram, 2005)
assumed that the solution of Eq. (1) can be expressed by a polyno-
mial expression as follows

y ¼
X1
i¼0

Aixi; ð2Þ

where Ai is a vector function which is the same size as y0.
However, the authors think that it should choose an appropriate

function as the basis function according to the characteristic of stiff
systems in order to improve the computational efficiency and
accuracy.

It is well known that a real function can be expressed by
some different basis functions. For example, let us consider
u(t) = tanh (t), which can be expressed by a polynomial expression
as follows

tanhðtÞ � t � t3

3
þ 2t5

15
� 17t7

315
þ � � � ; ð3Þ

Then Eq. (3) converges to the exact solution u(t) only in a small
region 0 6 t < 0.5 (see Fig. 1). However, by means of the exponential
function as the basis function, one has

tanhðtÞ � 1þ lim
m!þ1

2
Xm

n¼1

ð�1Þne�2nt þ ð�1Þmþ1e�ð2mþ1Þt

" #
; ð4Þ

which converges to the exact solution u(t) in the whole region
0 6 t < +1 (Liao and Tan, 2007). And, even taking the first few

terms, Eq. (4) can also give the very accurate approximation. For
example, when m = 2, Eq. (4) can be written as follows

tanhðtÞ � 1� 2e�2t þ 2e�4t � e�5t;

which agrees well with the exact solution tanh (t) in the whole
region 0 6 t < +1. In addition, the numerical tests in Table 1 dem-
onstrate that the efficiency of the exponential function is better
than that of a polynomial expression. When the approximation
solution is expressed by the exponential function u(t), it will take
a computing time of 0.094 s to obtain the value of u(t) in the time
interval [0, 3/2] with the time step h = 0.00001 s. However, using
a polynomial as the basis function, it will take a computing time
of 0.203 to 0.297 s.

Therefore, one can get the best approximation by means of an
appropriate basis function. For example, a periodic solution is
expressed more efficiently by periodic basis functions than by a
polynomial expression. The solution of Eq. (1) can be expressed
by a set of appropriate basis functions fxiðiÞ i � 0j g as follows

y ¼
X1
i¼0

AixiðxÞ; ð5Þ

where xi(x) is the ith term of the basis functions. For example, if the
set of appropriate basis functions is fexpðixÞ i � 0j g , xi(x) will be
exp (ix).

2.2. Scheme of the method

The way that the appropriate basis function method is used in
practice is carried out by the following computation steps:

Step 1: Choosing the order of approximation solution, m.
Step 2: When x = 0, according to Eq. (5), we can get

yðnÞð0Þ ¼
Xm

i¼0

Aix
ðnÞ
i ð0Þ: ð6Þ

Step 3: According to Eq. (1) and the initial conditions, the values
or expressions of yð0Þ; y0ð0Þ; y00ð0Þ; . . . ; yðmÞð0Þ can be obtained by
the iterative computation.
Step 4: When n ¼ 0; 1; 2; . . . ; m, according to Eq. (6), the linear
equations of Ai can be derived, and it is easy for us to develop a
computer code to calculate the coefficient Ai. Then, substituting
Ai into Eq. (5), the m th-order approximation solution of Eq. (1)
is obtained .
Step 5: Making step size of x to be h and substituting it into the
mth-order approximation solution of Eq. (1), we have y at
x = x0 + h.
Step 6: Repeating above steps 1 to 5, we can obtain the numer-
ical solution of Eq. (1).

3. Numerical experiments

The appropriate basis function method and the power series
method (Guzel and Bayram, 2005) are compared in the following
cases. We arranged the independent variable x, the step size h,Fig. 1. Exact and approximation solutions of u(t) = tanh (t).

Table 1
Comparison of approximation solutions of u(t) = tanh (t) in the time interval [0, 3/2] by using h = 10�5.

Type of approximation Solutions for different time Computing time (s)

t = 0.8 t = 1 t = 1.1 t = 1.2 t = 1.3 t = 1.4 t = 1.5

uðtÞ ¼ t � t3

3 þ 2t5

5 � 17t7

315
0.7491 1.0127 1.1954 1.4260 1.7142 2.0677 2.4904 0.297

uðtÞ ¼ t � t3

3 þ 2t5

5
0.7604 1.0667 1.3005 1.6193 2.0528 2.6366 3.4125 0.203

uðtÞ ¼ 1� 2e�2t þ 2e�4t � e�5t 0.6594 0.7592 0.7989 0.8326 0.8610 0.8849 0.9048 0.094
Accurate solution t = 0.8 t = 1 t = 1.1 t = 1.2 t = 1.3 t = 1.4 t = 1.5
u(t) = tanh (t) 0.6640 0.7616 0.8005 0.8337 0.8617 0.8854 0.9052

354 W. Chen et al. / Annals of Nuclear Energy 75 (2015) 353–357



Download English Version:

https://daneshyari.com/en/article/8069071

Download Persian Version:

https://daneshyari.com/article/8069071

Daneshyari.com

https://daneshyari.com/en/article/8069071
https://daneshyari.com/article/8069071
https://daneshyari.com

