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a b s t r a c t

A typical fault detection (FD) system comprises: (1) a model that reconstructs the values of the measured
signals in normal conditions, (2) a technique for the analysis of the differences (residuals) between the
measured and reconstructed values, and (3) a decision strategy for defining when the monitored
situation is to be detected as anomalous, i.e., reflecting a fault. Traditional techniques for this task, like
threshold-based methods and the Sequential Probability Ratio Test (SPRT), show difficulties in setting
their parameters and in providing information on the confidence of the FD system outcomes. In this
context, the objective of the present work is to develop a novel, non-parametric, sequential decision
strategy to decide whether the component is in normal or abnormal conditions that takes into account
the quantified uncertainty on the reconstructions in the form of Prediction Intervals (PIs). The Auto-
Associative Kernel Regression (AAKR) method is adopted to build the empirical model of signal
reconstructions. The novel FD system has been tested using an artificial case study representing the mon-
itoring of a component during typical start-up transients and it is validated using a real industrial case
concerning 27 shut-down transients of a nuclear power plant (NPP) turbine. The obtained results show
that the approach is able to guarantee low false and missing alarm rates and, hence, provide the decision
makers with robust information for establishing whether a maintenance intervention is required or not.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Over the last few decades, Condition Monitoring (CM) tech-
niques have been strongly developed in terms of measurement
devices, and data processing and management capabilities. These
developments have encouraged industries like nuclear, oil and
gas, automotive and chemical to apply Condition-Based Mainte-
nance (CBM) (Jardine et al., 2006; Campos, 2009) for increasing
system availability, reducing maintenance costs, minimizing
unscheduled shutdowns and increasing safety (Thurston and
Lebold, 2001; Yam et al., 2001; Miao et al., 2010).

A typical CBM scheme is shown in Fig. 1: a fault detection (FD)
system continuously collects information from sensors mounted
on the component of interest (Jardine et al., 2006; Ahmad and
Kamaruddin, 2012) and delivers information on the health state
(either normal or abnormal conditions) of the monitored compo-
nent through an alarm system interface. On the basis of the
received information, the decision maker decides whether it is

necessary to perform a maintenance action or if it is possible to
postpone it (Jardine et al., 2006).

In this work, we only focus on the FD system. This is typically
made by an empirical reconstruction model and a decision tool
that supports the decision maker. Several methods have been used
with success to reconstruct values of the signals expected in
normal conditions, for example Artificial Neural Networks (ANNs)
(Ebron et al., 1990; Dong and McAvoy, 1994; Fantoni and Mazzola,
1996; Hines et al., 1997; Maki and Loparo, 1997; Xu et al., 1999;
Hines and Davis, 2005) and Auto-Associative Kernel Regression
(AAKR) (Hines and Garvey, 2006; Yang et al., 2006; Heo, 2008;
Baraldi et al., 2012).

The decision tool typically analyzes the differences (residuals)
between the measured and reconstructed values of the n measured
signals in order to advice on the component health state (normal or
abnormal conditions) (Fig. 2). If reconstructions are similar to mea-
surements, then the component is recognized to be in normal con-
ditions (nc) and no alarm is triggered, whereas if reconstructions
are different from measurements, then abnormal conditions (ac)
are detected and an alarm is triggered (Zhao et al., 2011; Di Maio
et al., 2013).
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In threshold-based methods (Puig et al., 2008; Montes de Oca
et al., 2012), the presence of abnormal conditions is detected when
the residual values exceed a prefixed threshold. A practical diffi-
culty is the setting of the threshold value itself: too high threshold
values lead to high missing alarm rates (b), whereas too low values
lead to high false alarm rates (c) (Di Maio et al., 2013). Further-
more, threshold-based methods do not provide any information
on the confidence that we should have in the FD system outcomes,
such as expected missing and false alarm rates (Zhao et al., 2011).
Contrarily, statistical methods which consider the residual as a
random variable and analyze its statistical distribution, such as
the Sequential Probability Ratio Test (SPRT) (Wald, 1947; Gross
and Humenik, 1991; Schoonewelle et al., 1995; Hines and
Garvey, 2006; Baraldi et al., 2010; Di Maio et al., 2013), typically

allow obtaining the desired level of missing and false alarm rates.
However, also they require the setting of some parameters such as
those defining the expected statistical distributions of the residuals
in abnormal conditions, which can be difficult in practical industrial
applications (Emami-Naeini et al., 1988; Di Maio et al., 2013).

Independently from the choice of the reconstruction model and
of the method adopted to analyze the residuals, the performance of
the overall FD system is influenced by uncertainties which can
cause false and missing alarms, and affect the decision on the
necessity of performing a maintenance intervention (Helton,
1994; Zheng and Frey, 2005; Weber et al., 2007; Aven and Zio,
2012).

In this context, the objective of the present work is to develop a
novel, non-parametric, sequential decision tool that takes into

Notation and list of acronyms

CM Condition Monitoring
CBM Condition-Based Maintenance
FD Fault Detection
ANN Artificial Neural Networks
AAKR Auto-Associative Kernel Regression
n Number of measured signals
j Index of the generic signal, j = 1, . . . ,n
nc Normal Conditions
ac Abnormal Conditions
c False alarm rate
b Missing alarm rate
SPRT Sequential Probability Ratio Test
PI Prediction Interval
OS Order Statistics
M Length of the detection window
NPP Nuclear Power Plant
Np Number of measurement times and/or representative

turbine shaft speeds of each signal j, j = 1, . . . ,n
tk k-th time instant, k = 1, . . . ,Np

e(tk) Prediction error at the k-th time instant
~xtestðtkÞ Vector containing the test measurements of n signals at

time tk, k = 1, . . . ,Np

xtest (tk, j) Measured value of signal j, j = 1, . . . ,n at time tk,
k = 1, . . . ,Np~

x
_testðtkÞ Vector containing the reconstructed values of the test

measurements of n signals at time tk, k = 1, . . . ,Np

x
_testðtk; jÞ Reconstructed value of signal j, j = 1, . . . ,n at time tk,

k = 1, . . . ,Np

x̂lowerðtkÞ; x̂upperðtkÞ Lower and upper bounds of PI at time tk

1 � r Confidence level
a95percentile (tk) Sorted scale factor value at the k-th time instant

for 95% confidence level, k = 1, . . . ,Np

NV Number of measurements/reconstructions in the vali-
dation set performed at time tk after the beginning of
the transient used to estimate the PIs

varres
k ðx

_valðtkÞÞ Bias between NV measurements and their recon-
structions at time tk of signal j of the validation set

varres
k ðx

_valðtkÞÞ Variance of NV reconstructions at time tk of signal
j of the validation set

t1 1st time instant
Ntrain Number of time series measurements in normal condi-

tions of a training set
N Component transients of signals measurements
i i-th component transient, i = 1, . . . ,N
P1 Probability that 1 signal j, j = 1, . . . ,n is failed and de-

tected for a given detection window of length M

Pn Probability that at least one out of n signals are failed
and detected for a given detection window of length M

P Probability that a transient is failed and abnormal con-
ditions are detected using Np �M + 1 detection win-
dows

cmax Prefixed maximum limit of false alarm rate
fi(x(t, 1), . . . ,x(t, 4)) i-th transient of four-dimensional (n = 4) sig-

nals with Np = 101 time steps
~xnc

i¼1:4000ðtkÞ Time evolutions in nc of the 4 signals in the 4000
transients at tk, k = 1, . . . ,Np of the j-th signal (sigmoid
behavior)

a, f and l Random parameters in arbitrary units used to con-
struct transients in nc

xnc
i ðtkÞ Time evolutions in nc of the i-th transient at tk,

k = 1, . . . ,Np of the j-th signal (sigmoid behavior)
R Number of operational zones of a component in normal

conditions
h Gaussian kernel bandwidth
tf Random failure time of a signal j, j = 1, . . . ,n in a tran-

sient i, i = 1, . . . ,N
xac

i ðtkÞ Time evolutions in ac of the i-th transient at tk,
k = 1, . . . ,Np of the j-th signal (different functional
behavior)

a⁄ and l⁄ Random parameters in arbitrary unit used to con-
struct transients in ac based on the signal value

X Historical measurements performed at past time tk,
k = 1, . . . ,Ntrain

xtest(tk, 1) Test value of signal 1 measured at time tk k = 1, . . . ,Np

x(tk, j) Historical value of signal j measured at past time tk,
k = 1, . . . ,N of X

d2(tk) Euclidean distance between the current test measure-
ments ~xtestðt; jÞ and the k-th observation of X, x(tk, j)

l(j) and r(j) Mean and the standard deviation of the j-th signal
in X

w(tk) Similarity measures obtained by computing d2(tk),
k = 1, . . . ,N

ai(tk) Scale factor at the k-th time instant of the i-th valida-
tion transient, i = 1, . . . ,NV of signal j

ei(tk) Residual between the measured value of signal j and its
reconstruction in the i-th validation transient,
i = 1, . . .. ,NV at time tk

x
_val

i ðtkÞ Reconstructed value of signal j at time tk, k = 1, . . . ,Np in
the i-th validation transient i = 1, . . . ,NV

x test-normalized (t, j) Normalized values of x(t, j) at time t using l(j)
and r(j)

xval
i ðtkÞ Value of signal j measured at time tk, k = 1, . . . ,Np in the

i-th validation transient i = 1, . . . ,NV
d Outcome of the Durbin–Watson test
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