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a b s t r a c t

The fission matrix method can be used to provide estimates of the fundamental mode fission distribution,
the dominance ratio, the eigenvalue spectrum, and higher mode forward and adjoint eigenfunctions of
the fission distribution. It can also be used to accelerate the convergence of power method iterations
and to provide basis functions for higher-order perturbation theory. The higher-mode fission sources
can be used to determine higher-mode forward fluxes and tallies, and work is underway to provide
higher-mode adjoint-weighted fluxes and tallies. These aspects of the method are here both theoretically
justified and demonstrated, and then used to investigate fundamental properties of the transport
equation for a continuous-energy physics treatment. Implementation into the MCNP6 Monte Carlo code
is also discussed, including a sparse representation of the fission matrix, which permits much larger and
more accurate representations. Properties of the calculated eigenvalue spectrum of a 2D PWR problem
are discussed: for a fine enough mesh and a sufficient degree of sampling, the spectrum both converges
and has a negligible imaginary component. Calculation of the fundamental mode of the fission matrix for
a fuel storage vault problem shows how convergence can be accelerated by over a factor of ten given a flat
initial distribution. Forward fluxes and the relative uncertainties for a 2D PWR are shown, both of
which qualitatively agree with expectation. Lastly, eigenmode expansions are performed during source
convergence of the 2D PWR problem for two initial distributions; observed decay rates of coefficients
agree closely with expectation.

Published by Elsevier Ltd.

1. Introduction

Continuous-energy Monte Carlo codes simulate neutron behav-
ior using the best available nuclear data, accurate physics models,
and detailed geometry models. Reactor criticality calculations for
keff and the power distribution are carried out iteratively, using
the power method, where batches of neutrons are simulated for
a single generation. The first-generation fission neutrons produced
in a batch become the starting neutron sites for the next batch. A
suitable number of ‘‘inactive’’ initial batches are required to con-
verge to the fundamental mode eigenvalue and eigenfunction,
and then succeeding iterations with ‘‘active’’ batches are used to
accumulate Monte Carlo tallies for estimating desired reaction rate
distributions.

Most Monte Carlo codes perform the power iteration without
acceleration and can sometimes exhibit very slow convergence.

Statistical noise for batch results precludes the use of common
outer iteration acceleration methods (e.g. Chebyshev). An addi-
tional limitation of standard Monte Carlo codes is the inability to
directly calculate higher eigenmodes.

The fission matrix approach was proposed in the earliest works
on Monte Carlo criticality calculations (Morton, 1956; Kaplan,
1958; Hammersely and Handscomb, 1964) and has been tried by
many researchers over the years (Urbatsch, 1992; Kitada and
Takeda, 2001; Dufek and Gudowski, 2009; Wenner and
Haghighat, 2011). The present work provides a rigorous derivation
of the forward and adjoint forms of the fission matrix treatment for
K-eigenvalue problems. The method is then used to investigate
fundamental properties of the transport equation for a continu-
ous-energy physics treatment, for both forward and adjoint modes.
The eigenvalue spectrum of a 2D PWR problem is examined in
terms of its convergence with mesh refinement and the diminish-
ment of its complex part with larger sampling.

Implementation in the MCNP6 Monte Carlo code (Goorley et al.,
2013) and the sparse storage methodology is discussed, as well as
the ability to compute higher mode eigenfunctions for fission
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sources, fluxes, and reaction rates (e.g. a higher mode capture rate
for use in second-order perturbation theory calculations). Results
from these higher mode calculations are shown, in addition to
two applications relevant to criticality calculations: source conver-
gence acceleration and modal expansion. Using forward source
modes from the fission matrix, the first 30 forward flux modes
are calculated from a 2D PWR problem by running fixed source cal-
culations, and reasonable relative variances are found. Conver-
gence acceleration is demonstrated for a fuel storage vault
problem: from a flat initial distribution, the number of iterations
required for convergence is reduced by over a factor of ten. Eigen-
mode expansions of converging fission sources for the 2D PWR
problem are discussed for two different initial distributions: a
point in the center of the core and a point in the corner. The decay
rates of significant expansion coefficients are shown to agree with
expectations calculated directly from the fission matrix. This paper
will summarize and extend work reported in Carney et al. (2012,
2013a,b) and Brown et al. (2013).

2. Theory

The following sections provide derivations of the K-effective
form of the integral transport equations for the forward and
adjoint fission sources, for continuous-energy problems using a
rigorous Green’s function approach (Sections 2.1–2.3). The integral
equations are then integrated over spatial regions to provide an
exact prescription for the fission matrix elements and resulting
equations for the regionwise sources (Sections 2.4 and 2.5). The
solution to the fission matrix equations, both forward and adjoint,
is shown to be exact if the within-region weighting functions are
known (as in the case of a converged fission source distribution),
or in the limit of vanishingly small region size (Section 2.6). The
basis for higher eigenmode calculation is then mentioned (Sec-
tion 2.7), followed by a discussion of the method’s implementation
into MCNP6 (Sections 2.8–2.11). Lastly, the expansion of the itera-
tive fission source into fission source eigenmodes is introduced
(Section 2.9).

2.1. Integral equation for neutron source

The K-eigenvalue form of the neutron transport equation is

M �Wð~r; E; X̂Þ ¼ 1
K

vðEÞ
4p

Sð~rÞ; ð1Þ

where M is the net loss operator defined by

M �Wð~r; E; X̂Þ ¼ X̂ � rWð~r; E; X̂Þ þ RTð~r; EÞWð~r; E; X̂Þ

�
ZZ

dE0dX̂0RSð~r; E0 ! E; X̂0 ! X̂ÞWð~r; E0; X̂0Þ; ð2Þ

which contains leakage, collision, and scattering terms, respec-
tively. Sð~rÞ is the fission neutron source, defined by

Sð~rÞ ¼
ZZ

dE0dX̂0mRFð~r; E0ÞWð~r; E0; X̂0Þ; ð3Þ

and vðEÞ is the emission energy spectrum of fission neutrons.
Fission neutron emission is assumed to be isotropic. To simplify
the analysis that follows, vðEÞ is assumed to be independent of
space and the energy of the neutrons causing fission (see Appendix
A for discussion).

The Green’s function for this problem is defined by the equation

M � Gð~r0; E0; X̂0 !~r; E; X̂Þ ¼ dð~r �~r0ÞdðE� E0ÞdðX̂� X̂0Þ; ð4Þ

where the ‘‘0’’ subscript denotes an initial point in phase space, and
d is the Dirac delta function. Then, based on linearity of the
transport equation and the superposition principle, it follows that

Wð~r; E; X̂Þ ¼ 1
K

ZZZ
d~r0dE0dX̂0

vðE0Þ
4p

� Sð~r0ÞGð~r0; E0; X̂0 !~r; E; X̂Þ:

ð5Þ

Eq. (5) is the K-eigenvalue form of the Peierls equation. Now multi-
ply Eq. (5) by mRFð~r; EÞ and integrate over all E and X̂:

Sð~rÞ ¼ 1
K

Z
d~r0Sð~r0ÞHð~r0 !~rÞ; ð6Þ

where the kernel Hð~r0 !~rÞ represents the energy-angle averaged
Green’s function,

Hð~r0!~rÞ¼
Z Z Z Z

dEdX̂dE0dX̂0mRFð~r;EÞ�
vðE0Þ

4p
Gð~r0;E0;X̂0!~r;E;X̂Þ:

ð7Þ

Eq. (6) is an integral equation for the neutron source at~r expressed
in terms of the kernel H. H is the Green’s function integrated over
angles and energies, weighted by the initial spectrum and final fis-
sion neutron production. It can readily be evaluated by either con-
tinuous-energy or multigroup Monte Carlo without approximation.
That is, the Green’s function G is provided directly by the transport
simulation in a Monte Carlo code; the energy-angle integration to
produce H in Eq. (7) is a tally in the Monte Carlo simulation, binned
according to the initial and final spatial positions. No approxima-
tions were made in obtaining Eqs. (6) and (7).

2.2. Integral equation for adjoint neutron source

The K-eigenvalue form of the adjoint neutron transport equa-
tion can be written as

My �Wyð~r; E; X̂Þ ¼ 1
K

mRFð~r; EÞSyð~rÞ; ð8Þ

where My is the operator adjoint to M, defined by

My �Wyð~r; E; X̂Þ ¼ �X̂ � rWyð~r; E; X̂Þ þ RTð~r; EÞWyð~r; E; X̂Þ

�
ZZ

dE0dX̂0RSð~r; E! E0; X̂! X̂0ÞWyð~r; E0; X̂0Þ; ð9Þ

Syð~rÞ is the adjoint source, defined by

Syð~rÞ ¼
ZZ

dE0dX̂0
vðE0Þ
4p

Wyð~r; E0; X̂0Þ; ð10Þ

Bell and Glasstone (1970) and others have shown that the eigen-
value K in Eq. (8) is identical to the eigenvalue K in Eq. (1), hence
the analysis below will just use K, rather than K and Ky.

The Green’s function for this problem is defined by the
equation

My � Gyð~r0; E0; X̂0 !~r; E; X̂Þ ¼ dð~r �~r0ÞdðE� E0ÞdðX̂� X̂0Þ: ð11Þ

It then follows that

Wyð~r;E;X̂Þ¼ 1
K

Z Z Z
d~r0dE0dX̂0mRFð~r0;E0Þ �Syð~r0ÞGyð~r0;E0;X̂0!~r;E;X̂Þ:

ð12Þ

Now multiply Eq. (12) by vðEÞ=4p and integrate over all E and X̂:

Syð~rÞ ¼ 1
K

Z
d~r0Syð~r0ÞHyð~r0 !~rÞ; ð13Þ

where the kernel Hyð~r0 !~rÞ represents the energy-angle averaged
adjoint Green’s function (now weighted by the final spectrum and
initial fission neutron production),

Hyð~r0!~rÞ¼
Z Z Z Z

dEdX̂dE0dX̂0
vðEÞ
4p
�mRFð~r0;E0ÞGyð~r0;E0;X̂0!~r;E;X̂Þ:

ð14Þ
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