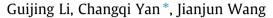
FISEVIER


Contents lists available at ScienceDirect

Annals of Nuclear Energy

journal homepage: www.elsevier.com/locate/anucene

Optimization of a moisture separator reheater

Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin 150001, China

ARTICLE INFO

Article history: Received 5 December 2013 Received in revised form 23 April 2014 Accepted 23 April 2014 Available online 16 August 2014

Keywords: Moisture separator reheater Optimization design Weight

ABSTRACT

The optimization of component size aimed to minimize the weight and volume is an important issue to a nuclear power plant design. The optimization algorithm is applied to determine the optimum structural and operation parameters of components in order to reduce the difficulty of manufacture and transport of large components in those nuclear power plants with high powers. A preliminary optimal design is performed on the moisture separator reheater of Qinshan I nuclear power plant in this paper. A self-adapting multi-complex-shape algorithm has been developed and coupled with the thermal mathematical model of the moisture separator reheater, written in C#. The steady-state thermal mathematical model of moisture separator reheater is used to estimate the weight of moisture separator reheater according to the variation of a given number of structural and operation parameters. Then, the thermal mathematical model coupled with the self-adapting multi-complex-shape algorithm permits a set of best structural and operation parameters of the moisture separator reheater to be determined. The results clearly show that there is plenty of potential to improve the design of moisture separator reheater, while satisfying the structural and performance constraints. The results can also help both designers and operators to make a more convenient selection of the structural and operation parameters of moisture separator reheater.

© 2014 Published by Elsevier Ltd.

1. Introduction

With the development of optimization methodology, it has been successfully applied to the fields of the nuclear reactor core fuel reloading (Silva and Schirru, 2011; Meneses et al., 2009; Waintraub et al., 2009), the optimization of thermodynamic efficiency and output power (Teyssedou et al., 2010), reactor core design (Waintraub et al., 2009), etc. The investigation of minimization component size has also attracted intense attention during recent years. The aim is to find the optimum structural and operation parameters of components in order to reduce the difficulty of manufacture and transport of large components in those nuclear power plants with high powers. In addition, to fulfill some special conditions, e.g., in the space station and in the marine transportation, a more compact nuclear power plant is required.

For the size optimization of single component, the optimized results clearly show that there is a great deal of potential to reduce the size of the main components in a nuclear power plant. The investigations are performed on optimal design of the steam generator (Liu et al., 2012; Qin et al., 2011), the pressurizer (He et al., 2010), the reactor coolant pump (Li et al., 2011; Lv et al., 2012), and the turbine unit (Zheng et al., 2011). Liu et al. (2014)

optimized the main component size and nuclear power system thermodynamic efficiency, without taking into account the size optimization of moisture separator reheater (MSR).

In a pressurized water nuclear reactor, the high pressure (HP) turbine outputs power with close to saturation steam entering. At the HP turbine exhaust, the steam may have as much as 15% moisture. This can corrode and also erode the low pressure (LP) turbine. In addition, operation with wet steam causes inefficiency. That is why the moisture has to be removed through the moisture separators and the vapor has to be reheated through the reheaters. Thus, the MSR is the important component in a nuclear power plant for increasing the efficiency and diminishing the risk of erosion or corrosion damage to the components connected downstream of the MSR. However, the investigation on the size optimization of reheat component is less advanced. In this paper, the objective is to propose a method to optimize the net weight of MSR.

In the present work, the operation and structural parameters of MSR of Qinshan I nuclear power plant are optimized with the optimal object of net weight, while satisfying the corresponding design and performance constraints. The rest of this paper is organized as follows. Section 2 is devoted to the description of the mathematical model of MSR. The self-adapting multi-complex-shape algorithm is discussed in Section 3. Application of the self-adapting multi-complex-shape algorithm for optimal design of MSR net weight is

^{*} Corresponding author. Tel./fax: +86 0451 82569655. E-mail address: changqi_yan@163.com (C. Yan).

Nomen	clature		
		N_1	number of the tubes
Abbrevio		γ	ratio
MSR	moisture separator reheater	D_{b1}	bundle diameter (m)
HP	high pressure	A_{o1}	outer surface area of finned tube per unit length (m ² /n
LP	low pressure	A_{f1}	surface area of fins per unit length (m²/m)
S_f	fin pitch (m)	A_{t1}	outer surface area of tube between fins per unit lengt
G_{o1}	mass flow density of the heated steam $(kg/(m^2 \circ C))$		(m^2/m)
		N_f	fins number per unit length
Superscript		δ_{fa}	fin average thickness (m)
1	the first stage reheater bundle	C_f	fin shape modifiable factor
2	the second stage reheater bundle	A_{i1}	inner surface area of finned tube per unit length (m ² /n
_		r_{ob1}	finned tube radius at the fin base (m)
Function		r_{o1}	finned tube outer radius (m)
	the first zero-order Bessel function	Re_1	Reynolds number of the heated flow
$I_{(0)}()$		Pr_1	Prandtl number of the heated flow
$I_{(1)}()$	the first 1st-order Bessel function	l_{o1}	flow length of the heated steam (m)
$K_{(0)}()$	the second zero-order Bessel function the second 1st-order Bessel function	d_{e1}	equivalent diameter (m)
$K_{(1)}()$	the second 1st-order bessel function	α_{o1}	outer heat transfer coefficient of the tubes (W/(m ² °C
		μ_{o1}	dynamic viscosity coefficient of the heated steam (Pa
General symbols		μ_{wo1}	outer dynamic viscosity coefficient of the tube wa
W_{sm}	moisture separators model weight (t)		(Pas)
m_o	mass flow of moisture separators (kg/s)	λ_{o1}	conductivity of the heated flow $(W/(m {}^{\circ}C))$
m_{mo}	mass flow of moisture separators model (kg/s)	G_1	inner mass flow density of the tubes $(kg/(m^2 s))$
d_{i1}	finned tube inner diameter (m)	A_{l1}	inner heat transfer area of the tubes per unit lengt
d_{o1}	finned tube outer diameter (m)	1 1/1	(m^2/m)
h_f	fin height (m)	C_{q1}	cross-flow scrubbing modifiable factor
S ₁	finned tube pitch (m)	δ_s	thickness of the shell (m)
y_1	inner humidity of the tubes		thickness of the ellipsoidal head (m)
g	gravity acceleration (m/s^2)	δ_h	
-	density of the saturation water (kg/m^3)	δ_{ts}	thickness of the tube sheet of reheater (m)
ρ_{fi1}	density of the saturation water (kg/m ³)	P_{ds}	design pressure on concave side of head (MPa)
$ ho_{gi1}$	inner heat transfer coefficient of tubes $(W/(m^2 ^{\circ}C))$	P_{d1}	design pressure on the tube-side (MPa)
α_{i1}	conductivity of the saturation water $(W/(m \circ C))$	D_{si}	inner diameter of the shell (m)
λ_{f1}		D_t	diameter of tube sheet (m)
γ_1	latent heat (J/kg)	S	allowable stress value of the material (MPa)
v_{f1}	kinematic viscosity coefficient of the saturation water	С	additional thickness (m)
	(m^2/s)	F_a	modifiable factor
t_{s1}	saturation temperature of the heating flow (°C)	d	diameter of tube hole (m)
t_{wi1}	inner temperature of the tube wall (°C)	r	tube hole pitch (m)
k_1	heat transfer coefficient (W/($m^2 ^{\circ}C$))	L_s	length of the shell (m)
R_{fo1}	outer fouling resistance of the tubes (m² °C/W)	$ ho_{s}$	density of the shell (kg/m³)
R_{fi1}	inner fouling resistance of the tubes (m ² °C/W)	ρ_h	density of the ellipsoidal head (kg/m³)
δ_{t1}	thickness of the tube wall (m)	ρ_t	density of the tube (kg/m ³)
λ	conductivity of the tube wall $(W/(m {}^{\circ}C))$	ρ_{ts}	density of the tube sheet of reheater (kg/m³)
l_{e1}	average effective length of the finned tube bundle (m)	V_{ho}	volume on the convex side of head (m ³)
Q_{t1}	heat transfer rate (W)	V_{hi}	volume on the concave side of head (m ³)
Q_{l1}	heat transfer rate per unit length (W/m)	h_{o1}	depth on the convex side of head (m)
C_{po1}	specific heat at the heated flow pressure (J/(kg °C))	t_o	heated steam outlet temperature of the moisture sepa
m_{ro}	outer mass flow of the tubes (kg/s)	-0	rator reheater (°C)
t_{o1}	outlet temperature of the heated flow (°C)	m.	mass flow of the heating steam (kg/s)
t _{i1}	inlet temperature of the heated flow (°C)	m ₁	inlet pressure of the heating steam (MPa)
h_{i1}	depth on the concave side of head (m)	P_{i1}	
h	length of the straight edge of head (m)	Ε	lowest efficiency of any joint in the head
l_{t1}	average length of the finned tube (m)		
	average length of the minica table (III)		

discussed in Section 4. Section 5 discusses the obtained results. Section 6 concludes the paper.

2. Moisture separator reheater mathematical model

In a pressurized water nuclear reactor, close to saturation steam is used at the entrance of the HP turbine. The steam leaves the HP turbine as slightly-wet saturated steam. The increase of steam

humidity content (i.e., formation of liquid droplets) tends to increase the erosion of the blades and deteriorate the efficiency of power plant. A vapor superheating is absolutely necessary before it enters into the LP unit. In Qinshan I nuclear power plant, wetted steam at the exhaust of the HP turbine flows through moisture separators of the MSR which collect the moisture, mechanically dry the vapor and drain out the liquid. Then, the vapor is reheated through the reheaters of the MSR. The required superheating is obtained by a derivation of a fraction of the steam

Download English Version:

https://daneshyari.com/en/article/8069226

Download Persian Version:

https://daneshyari.com/article/8069226

<u>Daneshyari.com</u>