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a b s t r a c t

Several technological issues, such as reactor start-up analysis or kinetics studies of accelerator-driven
systems, demand the asymptotic time behaviour of neutron transport to be assessed. Typically, this
amounts to solving an eigenvalue equation associated to the Boltzmann operator, whose precise nature
depends on whether delayed neutrons are taken into account. The inverse of the dominant eigenvalue
can be physically interpreted as the asymptotic reactor period. In this work, we propose a Monte Carlo
method for determining the dominant alpha eigenvalue of the Boltzmann operator and the associated
fundamental mode for arbitrary geometries, materials, and boundary conditions. Extensive verification
tests of the algorithm are performed, and Monte Carlo calculations are finally validated against reactor
period measurements carried out at the ORPHEE facility of CEA/Saclay.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In many technological applications, encompassing reactor
start-up analysis, reactivity measurements and accelerator-driven
systems, one is interested in determining the time behaviour of
the neutron flux u in a system, starting from a given initial condi-
tion (Bell and Glasstone, 1970; Pázsit and Pál, 2008; Pfeiffer et al.,
1974; Hansen, 1985; Cao and Lee, 2008; Persson, 2008; Keepin,
1965). The full description of such behaviour is provided by the
time-dependent Boltzmann equation, possibly coupled with the
equations for the precursors concentrations ci;j, which read (Bell
and Glasstone, 1970)
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We have here defined the net disappearance operator

Lf ¼ X � rf þ Rt f �
Z
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and the prompt fission operator

Fpf ¼ vpðr; vÞ
Z
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Notation is as follows: v is the neutron speed, r is the position
vector and X is the angular direction vector, Rt is the total cross-
section, Rs is the differential scattering cross-section, vp is the
normalized spectrum for prompt fission neutrons, mp is the average
number of prompt fission neutrons, Rf is the fission cross-section,
vi;j

d is the normalized spectrum of delayed neutrons emitted from
precursor family j of isotope i; ki;j is the decay constant of precursor
family j of isotope i; mi;j

d is the average number of delayed fission
neutrons of precursor family j of isotope i, and the double sum is
extended over all fissile isotopes i and over all precursor families j
for each fissile isotope. The equations above are completed by
assigning the proper initial and boundary conditions for u and ci;j.
We have assumed here that all physical parameters (such as
cross-sections, velocity spectra, and so on) are time-independent:
this amounts to taking t shorter than the typical time scale of ther-
mal–hydraulic and Doppler feedback (Keepin, 1965; Akcasu et al.,
1971). If N fissile isotopes are present, each associated to M precur-
sors families, Eqs. (1) and (2) form a system of 1þ N �M equations
to be solved simultaneously.

Often, only the long-time (asymptotic) behaviour is required so
as to characterize the system evolution (Bell and Glasstone, 1970;
Duderstadt and Martin, 1979). Then, for bounded domains an
exponential relaxation of the kind
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is postulated for both the neutron flux and the precursors concen-
trations, where the values as represent the relaxation frequencies
(Bell and Glasstone, 1970; Duderstadt and Martin, 1979). Eqs. (5)
and (6) formally stem from imposing the separation of variables
in Eqs. (1) and (2), and can be more rigorously justified by resorting
to Laplace transform or equivalently to spectral analysis
(Duderstadt and Martin, 1979). Yet, proving the feasibility of such
an expansion is highly non-trivial in general, and precise (although
not very restrictive) conditions are required on the geometry of the
domain and on the material cross-sections (Bell and Glasstone,
1970; Duderstadt and Martin, 1979; Larsen and Zweifel, 1974).
Here, for the sake of simplicity, we will assume that such conditions
are met (which is typically the case for almost all systems of prac-
tical interest) and that there exists a set of values a such that
separation of variables is allowed.

Then, substituting Eqs. (5) and (6) into Eqs. (1) and (2), respec-
tively, yields the so-called (coupled) alpha-static equations
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which formally represent a system of eigenvalue equations for the
flux ua and the precursors ci;j

a , the eigenvalues being a. In principle,
Eqs. (7) and (8) have 1þ N �M sets of eigenvalues associated to the
prompt and delayed components (Bell and Glasstone, 1970; Cohen,
1958; Henry, 1964).

In order to determine the asymptotic time behaviour of the sys-
tem, the algebraically largest eigenvalue a must be found, so that
the corresponding fundamental mode uaðr;vÞ will provide the
space and velocity shape of the neutron flux at long times. For
short observation times t, the impact of delayed neutrons can be
safely neglected (i.e., ci;j

a ¼ 0), so that Eq. (7) yields

a
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where a takes the name of prompt time eigenvalue and physically
represents the inverse of the prompt reactor period. The mathemat-
ical properties of the resulting (linear) eigenvalue equation and the
numerical schemes for assessing the dominant prompt a eigenvalue
have been the subject of considerable research efforts: see for
instance the comprehensive works (Bell and Glasstone, 1970;
Duderstadt and Martin, 1979; Larsen and Zweifel, 1974; Albertoni
and Montagnini, 1966) about theoretical aspects and (Hill, 1983;
Brockway et al., 1985; Cullen et al., 2003; Singh et al., 2009;
Yamamoto, 2011; Nolen et al., 2012; Zoia et al., 2014) concerning
numerical methods.

For observation times t comparable to the decay lifetimes k�1
i;j of

the precursors, delayed contributions must be taken into account
(Bell and Glasstone, 1970). It is customary to formally solve Eq.
(8) for the precursor concentration and to replace the resulting
ci;j
a into Eq. (7). This yields the (nonlinear) eigenvalue problem for

ua (Bell and Glasstone, 1970; Weinberg, 1952; Cohen, 1958;
Henry, 1964)
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where we have defined the delayed fission operator
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The full Eq. (10) including delayed contributions (in which case
a is called the delayed time eigenvalue, and physically represents
the inverse of the reactor period) has received comparatively less
attention than the prompt Eq. (9) (see for instance (Bell and
Glasstone, 1970; Cohen, 1958; Henry, 1964; Kaper, 1967) for a sur-
vey). However, Eq. (10) has recently attracted renewed interest
(Hoogenboom, 2002; Betzler et al., 2012; Singh et al., 2011;
Nauchi, 2014) in view of its practical applications in reactor kinet-
ics. Indeed, integrating Eq. (10) over all phase space variables leads
to the inhour-like equation
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where q0 ¼ ðk0 � 1Þ=k0 plays the role of a reactivity, with
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K0 is the mean generation time
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and bi;j
0 are the flux-averaged delayed neutron fractions
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with
P

i;jb
i;j
0 ¼ b0. From Eq. (12) it is apparent that a represents the

inverse reactor period in the inhour-like equation. The index zero is
used to express the fact that these quantities have been averaged
over the phase space variables without weighting by the adjoint
flux.

In a recent paper, we have proposed a Monte Carlo method to
find the dominant eigenvalue of Eq. (9), in the absence of delayed
neutrons (Zoia et al., 2014). In this work, we extend our previous
results to the general case of the non-linear eigenvalue problem
of Eq. (10), including both prompt and delayed contributions. The
paper is structured as follows: in Section 2 we first recall the algo-
rithm for prompt eigenvalues and we show that it can be easily
modified so as to include delayed neutrons. Then, in Section 3
we test the proposed algorithm on a few significant verification
tests. A validation of the Monte Carlo calculations against reactor
period measurements performed at the ORPHEE facility of CEA/
Saclay is discussed in Section 4, and conclusions are finally drawn
in Section 5.

2. A Monte Carlo method for alpha eigenvalues

The key tool for solving Eqs. (9) and (10) by Monte Carlo simu-
lation is the so-called a-k power iteration algorithm,1 whose
specific details depend on the sign of the dominant eigenvalue a
(Hill, 1983; Brockway et al., 1985; Cullen et al., 2003; Zoia et al.,
2014). In the following, we sketch the structure of the algorithm
by considering supercritical (a > 0) and subcritical (a < 0) configu-
rations separately.

1 Actually, alternative algorithms have been also proposed, such as the weight
correction methods for prompt (Yamamoto, 2011) and delayed (Nauchi, 2014) a
eigenvalues, or the transition rates matrix (Betzler et al., 2012).
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