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a b s t r a c t

Although there have been well established transport based codes for core neutronics analysis, it is yet
impractical to implement them in the real core treatment because their performance is not so great on
ordinary server computers. For this reason, most of neutronics codes for core calculation are subject to
two steps calculation procedure which consists of homogenized group constant generation and flux dis-
tribution generation which is the main concern of this work. This paper brings out a 2 dimensional nodal
code based on point flux algorithm and implements two schemes for pin power reconstruction. In the
first scheme, pin power reconstruction is obtained without considering corner point fluxes in the fuel
assemblies but in the second method corner fluxes are included to assess their effect on pin power recon-
struction. To obtain corner point fluxes, Smith’s procedure and the method of successive smoothing are
used. Improvement in pin power reconstruction by including fuel assembly corner fluxes is illustrated in
this paper and assessed by Monte Carlo simulation.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Fuel pin power information is important for the safety assess-
ment of a core fuel loading since it is required in the determination
of the peak linear heat generation rate and the minimum departure
from nucleate boiling ratio (DNBR). Nodal expansion method
(NEM) is one of the most widely used methods in modern neu-
tronic codes. NEM provides a fast and accurate method of calculat-
ing flux and power distribution in a reactor core. The core is
divided into large homogenized nodes (Typically the size of a node
is a 20 cm � 20 cm). A large core may typically be represented in
half-core geometry by using 10,000 nodes. The NEM solution gives
the node average flux, power etc., but no information about the de-
tailed structures inside the nodes (Hojerup, 1990).

A reconstruction method can be used for rebuilding pin powers
from reactor core calculations performed with a coarse-mesh finite
difference diffusion approximation and single-assembly lattice cal-
culation. This method assumes that the detailed flux shape in an
assembly can be approximated by superposing detailed inner
assembly form function on a smoother intra-nodal shape function.
The assembly form functions are obtained from single-assembly
lattice calculation and the intra-nodal flux distribution are
computed using polynomial shapes constrained to satisfy the

nodal information approximated from the node-average fluxes
(Na Gyun et al., 2001).

Several researches have been focused on the pin power recon-
struction method (Koebke and Wagner, 1977; Boer and Finne-
mann, 1992; Bahadir and Lindahl, 2006; Joo et al., 2009;
Dahmani et al., 2011). In this paper, we try to investigate the effect
of including the corner point flux on the pin power prediction.
Doubtless, the accuracy of the pin power predictions depends on
the accuracy of the intra-nodal flux and cross section values and
form factors. In this work we develope a NODAL code in FORTRAN
programming language capable of implementing pin power recon-
structions in square structures. Two different methods for intra-
nodal flux approximation are presented (one without considering
corner point fluxes and the other with considering corner point
fluxes). In addition, two different schemes for computing corner
point flux approximation are implemented (Smith’s method and
method of successive smoothing). The procedure is applied on
PWR reactor core fuel assemblies (see Section 4) and results are
compared to those attained by Monte Carlo calculations.

2. Nodal expansion method

During the operation of nuclear reactors, fast calculation of the
neutronic parameters is necessary. Nodal methods are fast tools for
reactor calculation. These methods were developed in the 1970s
for numerical reactor calculations, especially for neutron diffusion
applications, Lawrence (1986). Nodal methods now have taken a
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firm place in the current production codes for reactor design as a
main computational engine. These methods use coarse meshes
with dimensions as large as fuel assemblies approximately result-
ing in dramatic reduction in computing time compared to the finite
difference methods. They attain very high accuracy by careful
treatment in discretizing the diffusion equations to enforce
neutron balance, Cho (2005). Nodal equations are obtained by
integrating the multi-group diffusion equation over a homoge-
neous region or node and then relating the net currents across
the surfaces to the outgoing and incoming partial currents. Spatial
coefficients are then used to relate the average fluxes and the
average outgoing partial currents on surfaces. Alternatively, the
spatial coupling coefficients can be defined in terms of the net
currents across a surface and the average fluxes in two adjacent
nodes. The elimination of the interface current in favor of the
coupling coefficients yields a 5 point equation in two dimensions
for nodal fluxes.

The nodal expansion method, NEM, is a class of nodal tech-
niques in which the average interface partial currents are treated
explicitly. Integrating the multi-dimensional diffusion equation
over transverse directions will lead to a coupled set of one dimen-
sional equation from which additional equations to relate the
partial currents on the surfaces of a node to the flux within the node
using polynomial expansion technique are obtained. Weighted
residual procedures are used to calculate the coefficient expan-
sions, Bennewitz et al. (1975a,b), Turinsky (1994). Procedures in
this scheme involve approximation of the one dimensional equa-
tions obtained by integrating over transverse directions. The fluxes
expanded in quadratic polynomials with coefficients being inter-
preted as the nodal flux and the average partial currents on the
surfaces. The flux expansion method Langenbuch et al. (1977b),
is developed by integrating the neutron diffusion equation over a
node and evaluating the resulting integral by expanding the flux
in products of higher order polynomials.

In this work we use the NEM method which has been developed
by the Putney (1984). This method enables the nodal equations to
be written in terms of the average node fluxes. Specially, we fo-
cused on the point flux technique which has been described in
detail in Section 2.1.

2.1. Derivation of nodal equations

In the nodal expansion methods the multi-group neutron diffu-
sion equation is effectively solved by representing the neutron flux
in each node by a polynomial expansion, and using a combination
of weighted residual equations, i.e.:
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where m, g, u and k are node number, energy group, Cartesian axes
and order of weighted diffusion equation respectively along conti-
nuity conditions to determine its coefficients.

In the zeroth order of the method, the nodal flux expansions is
chosen to be quadratic along setting W ½0�

gu ¼ 1. The necessary coef-
ficients can be determined by forcing the expansions to satisfy the
zeroth order (k = 0) weighted diffusion Eq. (1), i.e. the integral neu-
tron balance in the nodes, and the continuity of neutron flux and
net normal neutron current on their surfaces. In order to expand
the neutron flux in each node, it is necessary to introduce a set,
or sets, of axes in its dependent variables. For the case of 2D rect-
angular geometry, the most convenient approach is to reference
the flux expansion in each node to the local Cartesian axes (x, y).

The derivation can be further simplified if we define on these axes
the local dimensionless variables:

nu ¼
u

hm
u

; u ¼ x; y ð2Þ

The local Cartesian axes form the basis for the following nota-
tions and a schematic view of definitions is illustrated in Fig. 1
where:

Cm
us, left (s = l)/right (s = r) u-surface of node Pm, u = x, y

Um
g , average flux for group g in Pm

Wm
gus, average flux for group g at Cm

us

Wm
gu, one dimensional spatially averaged flux in the u-direction

of node Pm

km
gus, value of boundary condition at Cm

us

Pmus, node adjacent to surface Cm
us (of node Pm)

hm
u ; thickness of node Pm in the u direction

In this paper the point flux method is implemented as a core
calculation module.

2.2. Point flux method

This method is the coarse mesh flux expansion method of
Langenbuch et al. (1975, 1977a,b), later investigated by Rydin
and Sullivan (1978). The point flux method is similar to the average
flux method in that it is also based on the nodal integrated neutron
diffusion equation, but employs a nodal expansion which is fitted
to the center point flux of the node and the center point fluxes of
its surfaces. The nodal equations are derived in detail in (Putney,
1984), which a quadratic polynomial flux expansion in each node
is fitted to the node and surface center point fluxes to lead a ‘‘nodal
balance equation’’ of the form:
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Fig. 1. Some defined notations for derivation of methods.
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