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a b s t r a c t

This paper presents new algorithms for use in the eigenvalue response matrix method (ERMM) for reac-
tor eigenvalue problems. ERMM spatially decomposes a domain into independent nodes linked via
boundary conditions approximated as truncated orthogonal expansions, the coefficients of which are
response functions. In its simplest form, ERMM consists of a two-level eigenproblem: an outer Picard iter-
ation updates the k-eigenvalue via balance, while the inner k-eigenproblem imposes neutron balance
between nodes. Efficient methods are developed for solving the inner k-eigenvalue problem within the
outer Picard iteration. Based on results from several diffusion and transport benchmark models, it was
found that the Krylov–Schur method applied to the k-eigenvalue problem reduces Picard solver times
(excluding response generation) by a factor of 2–5. Furthermore, alternative methods, including Picard
acceleration schemes, Steffensen’s method, and Newton’s method, are developed in this paper. These
approaches often yield faster k-convergence and a need for fewer k-dependent response function evalu-
ations, which is important because response generation is often the primary cost for problems using
responses computed online (i.e., not from a precomputed database). Accelerated Picard iteration was
found to reduce total computational times by 2–3 compared to the unaccelerated case for problems dom-
inated by response generation. In addition, Newton’s method was found to provide nearly the same per-
formance with improved robustness.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction and background

Fundamental to reactor modeling is analysis of the steady-state
balance of neutrons, described concisely as

T/ð~qÞ ¼ 1
k

F/ð~qÞ; ð1Þ

where the operator T describes transport processes, F describes
neutron generation, / is the neutron flux, ~q represents the relevant
phase space, and k is the eigenvalue, the ratio of the number of neu-
trons in successive generations.

Since the late 1970s, full core analyses for light water reactors
(LWR) have been performed using relatively low fidelity nodal
methods based on clever homogenization of phase-space with pro-
ven success. However, as current reactors become increasingly het-
erogeneous due more aggressive fuel loadings and longer cycle
lengths in existing LWR’s, nodal methods are becoming less appli-
cable, and for new, highly heterogeneous reactor designs, even less

so. Although advances in production nodal codes, including use of
generalized multigroup SP3 transport with subassembly resolution,
address issues related to more complicated designs (Bahadir and
Lindahl, 2009), there likely is limited room for further improve-
ment of the underlying approach. Consequently, a move toward
full core analysis techniques that can leverage the high fidelity
methods typically used for smaller problems is desired.

1.1. The eigenvalue response matrix method

One such approach is the response matrix method (RMM),
which is based on a spatial decomposition of the global problem
of Eq. (1) into local fixed source problems connected by approxi-
mate boundary conditions. The response matrix method has been
used in various forms since the early 1960s (Shimizu et al.,
1963). Using the terminology of Lindahl and Weiss (1981), the
method can be formulated using explicit volume flux responses,
called the ‘‘source’’ RMM, or by using current responses that in-
clude fission implicitly and hence are functions of k, known as
the ‘‘direct’’ RMM. Although both forms are used in various nodal
methods, the source RMM is more widespread. This work is on
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the direct RMM, which shall be referred to as the eigenvalue re-
sponse matrix method (ERMM).

Several formulations of ERMM have been proposed since its
first use in the 1960s. Here, a rather general approach is described
based on expansions of the boundary conditions that couple sub-
volumes of the global problem, a formalism introduced as early
as the work of Lindahl (1976) and studied more recently by several
authors (Mosher and Rahnema, 2006; Roberts and Forget, 2011,
2012).

Suppose the global problem of Eq. (1) is defined over a volume
V. Then a local homogeneous problem can be defined over a subvo-
lume Vi subject to

T/ð~qiÞ ¼
1
k

F/ð~qiÞ; ð2Þ

and

Jlocal
� ð~qisÞ ¼ Jglobal

� ð~qisÞ; ð3Þ

where Jlocal
� ð~qisÞ is a function of the incident boundary flux, typically

the partial current, which quantifies net flows through a surface.
To represent the local problem numerically, an orthogonal ba-

sis, Pn, over the relevant phase space is defined

Pnð~qisÞ; n ¼ 0;1; . . . ;N; ð4Þ

subject toZ
Pmð~qisÞPnð~qisÞdqis ¼ dmn: ð5Þ

A response equation is defined

T/ms
i ð~qiÞ ¼

1
k

F/ms
i ð~qiÞ ð6Þ

subject to

Jlocal
� ð~qisÞ ¼ Pmð~qisÞ: ð7Þ

The resulting outgoing currents J�ð~qisÞ are used to define response
functions

rms
im0s0 ¼

Z
Pm0 ð~qis0 ÞJ

m
iþð~qis0 Þdqis0 : ð8Þ

The quantity rms
im0s0 has a simple physical interpretation: it is the m0th

order response out of surface s0 due to a unit incident mth order
condition on surface s of subvolume i.

The incident and outgoing currents are expressed as truncated
expansions using the same basis

Jis�ð~qisÞ �
XN

n¼0

jn
is�Pnð~qisÞ; ð9Þ

where

jn
is�
¼
Z

Pnð~qisÞJ�ðqisÞdqis: ð10Þ

These coefficients are then represented in vector form as

Ji� ¼ j0
i1� ; j

1
i1� ; . . . ; j0

i2� ; j
1
i2� ; . . . ; jN

iS�

� �T

; ð11Þ

and using these together with Eq. (8) yields the nodal balance
equation

Jiþ ¼

r01
i01 r11

i01 � � �
r01

i11 r11
i11 � � �

. .
.

2
664

3
775

j0
i1�

j1
i1�

..

.

2
6664

3
7775 ¼ RiJi�: ð12Þ

Global balance is defined by the eigenvalue response matrix
equation

MRðkÞJ� ¼ kJ�; ð13Þ

where R is the block diagonal response matrix of Ri; J� are vectors
containing all incident current coefficients, M ¼MT is the connec-
tivity matrix that redirects outgoing responses as incident re-
sponses of neighbors, superscript T represents the matrix
transpose, and k is an eigenvalue that represents the global balance
of neutron currents through all nodal surfaces. If the response ma-
trix R is conservative (i.e. it strictly maintains neutron balance),

lim
k!k�

k ¼ 1; ð14Þ

where k� is the true eigenvalue. For nonconservative response
expansions, the deviation of k from unity measures discontinuities
introduced across node boundaries and may be used to evaluate
accuracy of the expansions used (with respect to an infinite
expansion).

The k-eigenvalue can be interpreted physically as the ratio of
neutrons produced in one generation to the previous generation.
Alternatively, k can be viewed as the ratio of gains to losses in a gi-
ven generation, and when applying this interpretation to the re-
sponse matrix formalism, k can be updated via the process

knþ1 ¼
FðknÞJ�

AðknÞJ� þ LðknÞJ�
; ð15Þ

where FðkÞJ� is the global fission rate, AðkÞJ� is the global absorp-
tion rate, and LðkÞJ� is the total leakage rate from global boundaries.

1.2. Survey of ERMM implementations

The method defined by Eqs. (2)–(15) originates from the work
of Shimizu (1963,), which appears to be the first work on response
matrix methods (although the authors acknowledged a connection
between their work and the earlier and more general theory of
invariant imbedding as developed by Bellman et al. (1960)). The
method was originally based on 1-D diffusion in slab geometry.
Aoki and Shimizu extended the approach to two dimensions, using
a linear approximation in space to represent boundary currents
(Aoki and Shimizu, 1965). A shortcoming of this early work was
an assumed value (unity) of the k-eigenvalue when evaluating re-
sponses, following which Eqs. (13) and (15) were solved just once
to compute k. Typically k � 1 for nuclear reactors, so the errors ob-
served were only tens of pcm, which may have been deceptively
small and not representative of more general cases. In the later
2-D analysis (Aoki and Shimizu, 1965), the results compared favor-
ably to fine mesh diffusion calculations.

Weiss and Lindahl generalized ERMM by considering arbitrarily
high order expansions of the boundary currents in Legendre poly-
nomials (Weiss and Lindahl, 1975) and introducing an iterative
sceheme for the k-eigenvalue equivalent to Eq. (15). Lindahl also
studied expansions of the current, comparing Legendre expansions
to an approach that divides the boundary in several segments in
which the current is assumed flat (Lindahl, 1976). A more complete
overview of these approaches can be found in the review by
Lindahl and Weiss (1981).

These diffusion-based methods rely on semi-analytic solutions
to the diffusion equation and hence require homogeneous nodes.
Previous scoping studies examined diffusion-based responses
using discretized operators (Roberts and Forget, 2011). By numer-
ically integrating the diffusion equation, heterogeneous nodes are
treated naturally, though no diffusion models with heterogeneous
nodes were studied.

In addition to methods based on diffusion theory, previous
work applied transport theory for generating responses. Pryor
et al. used a hybrid stochastic–deterministic approach based on
Monte Carlo and the collision probability method to generate re-
sponses (Pryor and Graves, 1973; Pryor, 1975; Sicilian and Pryor,
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