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a b s t r a c t

In this paper, an artificial neural network controller is presented using the Multifeedback-Layer Neural
Network (MFLNN), which is a recently proposed recurrent neural network, for neutronic power level con-
trol of a nuclear research reactor. Off-line learning of the MFLNN is accomplished by the Particle Swarm
Optimization (PSO) algorithm. The MFLNN-PSO controller design is based on a nonlinear model of the
TRIGA Mark-II research reactor. The learning and the test processes are implemented by means of a com-
puter program at different power levels. The simulation results obtained reveal that the MFLNN-PSO con-
troller has a remarkable performance on the neutronic power level control of the reactor for tracking the
step reference power trajectories.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Control of a nuclear reactor power level is challenging since the
dynamic of the reactor is very complex, nonlinear, time-varying,
also includes saturation, dead time, and changes with operating
conditions. Although a reactor control problem can be solved man-
ually by an expert human operator or automatically by a classical
controller such as a PID-type, these control solutions suffer perfor-
mance degradation, lack of safety, and take so much time to tune
the parameters. To get a satisfactory performance and a safe con-
trol operation, the application of modern or expert control meth-
ods such as neural network control presents a powerful challenge.

In the last decade, a few authors have studied the application of
the artificial neural network control in the nuclear reactor power
level control. Arab-Alibeik and Setayeshi (2005) proposed a neural
adaptive inverse controller to control the core power of a PWR
reactor. After the emulation of the inverse dynamic of the reactor
was obtained by the multilayer neural networks, it was used as a
controller. However, it is always not possible to get inverse of
the plants. Pérez-Cruz and Poznyak (2008) suggested a neural net-
work controller for power ascent of a TRIGA research reactor. A sin-
gle layer second order differential neural network accomplished
the on-line identification. This identifier is used to achieve the indi-
rect adaptive control action. In another paper, an indirect adaptive

controller for nuclear research reactors based on a generalized
Hopfield neural network was presented by Pérez-Cruz and Pozn-
yak (2010). Pérez-Cruz et al. (2011) proposed constrained neural
network control for the adaptive tracking of power profiles in the
TRIGA Mark-III research reactor. For the TRIGA Mark-II nuclear re-
search reactor in Turkey a trajectory tracking genetic fuzzy logic
controller was designed by Coban and Can (2010). Recently, Coban
(2011) suggested a fuzzy controller design for the TRIGA Mark-II
nuclear research reactor using the Particle Swarm Optimization
(PSO) algorithm. Liu and Cai (2012) have studied the fuel loading
pattern optimization for a typical pressurized water reactor
(PWR) using improved pivot PSO algorithm.

The particle swarm optimization algorithm among different
computational optimization algorithms is preferred to train the
controller parameters. In Dong et al. (2011), the PSO fuzzy neural
network control is used for the ball and plate system. In that study,
the PSO algorithm is used for the fuzzy neural network optimiza-
tion. In Sheikhan et al. (2012), neural based controller is used for
adaptive queue control in transmission control protocol communi-
cation. In the study, the PSO algorithm is exploited for training of
the weights of the neural network based controller.

Generally speaking, Feedforward Neural Networks (FNNs) and
Recurrent Neural Networks (RNNs) are used for control of dynamic
systems. Since a feedforward neural network which realizes static
mapping does not include dynamic memory, the tapped-delay-line
(TDL) method is commonly used for efficiently control of dynamic
systems. Nonetheless, this method has poor performance. Due to
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their intrinsic recurrence and dynamic mapping attribute, recur-
rent neural networks have superior performance, fast learning
capability, and use less memory. Hence, recurrent neural network
methods are important tools to realize linear or nonlinear control-
lers. Some kinds of recurrent neural networks are successfully ap-
plied to the nonlinear dynamic systems for control or identification
purposes in Chow and Fang (1998), Coban (2013), Kim et al. (1997),
and Savran (2007). The Multifeedback Layer Neural Network
(MFLNN) proposed by Savran (2007) among them is one of the
recurrent neural network methods and used to control the neu-
tronic power level of the nuclear research reactor in this study be-
cause of its powerful ability to learn control laws. The MFLNN
which is a very new version of the recurrent neural networks has
three feedback layers for recurrence unlike the other RNNs which
has simple feedback elements (Savran, 2007). For the MFLNN

training, the PSO algorithm is selected here. The derivative based
algorithms such as the back-propagation and Levenberg-Marquart
(LM) algorithms necessitate desired values of the network’s output
or Jacobian of the system during the training in order to get error of
the controlled system. Consequently, it is not suitable for controller
design (Aksu, 2013). For this purpose, the PSO is preferred to train
the MFLNN. For the first time in the literature, the controller based
on the MFLNN-PSO is applied to the neutronic power level control
of a nuclear research reactor. In the proposed MFLNN-PSO control-
ler scheme a designer does not need the inverse dynamic of the
plant unlike the other configurations presented in Arab-Alibeik
and Setayeshi (2005), Pérez-Cruz et al. (2011), Pérez-Cruz and
Poznyak (2008), and Pérez-Cruz and Poznyak (2010).

In this paper, a neural network controller is designed for control
of the neutronic power level control of the nuclear research

Nomenclature

MFLNN multifeedback-layer neural network
PSO particle swarm optimization
ITU Istanbul Technical University
n (t) neutron density
q (t) total reactivity
b total delayed neutron fraction
K neutron generation time
ki ith group delayed neutron decay constant
Ci (t) ith group precursor concentration
bi ith group delayed neutron fraction
Tf (t) fuel temperature
P (t) reactor power
qf density of fuel
Vf volume of the fuel
Cf heat capacity of the fuel
N number of the fuel elements
l total heat transfer coefficient of a fuel element
Tm (t) coolant temperature
qm (t) density of coolant
Vm volume of the coolant
Cm heat capacity of the coolant
_mpðtÞ total mass flow rate of coolant

C specific heat
Tmin inlet temperature of coolant
u (t) coolant velocity
uoi inlet coolant velocity
uo outlet coolant velocity
f friction loss factor
qoi coolant inlet density
qo coolant exit density
g gravity
Hc total core height
I (t) iodine concentration
cI yield constant for Iodine
kI decay constant for Iodine
Rf thermal group macroscopic cross section
mn neutron velocity
x (t) Xenon concentration
cx yield constant for Xenon
kx decay constant for Xenon
rx thermal microscopic absorption cross section for Xenon
x0 initial value of Xenon concentration
cf energy released in a nuclear fission reaction
qex (t) external reactivity inserted into reactor
af (Tf) temperature coefficient of reactivity
Tf0 initial temperature of a fuel

W1 weight between the input and the hidden layer in the
feedforward path

W2 weight between the hidden and the output layer in the
feedforward path

Wb
i input weights of the feedback layer neurons

Wc
i output weights of the feedback layers

hc (k) output of the hidden to hidden feedback layer neurons
yc (k) output of the output to hidden feedback layer neurons
zc (k) output of the feedback layer neurons
ŷðkÞ desired output
y (k) actual output
Bb

i bias values of the feedback layer neurons
uc

h;y;z activation functions of the feedback layer neurons
neth (k) the local fields of the hidden layer neurons
uh activation function of the hidden layer
nety (k) local field of output layer neurons
d index of dimension of the search space (D)
i index of the particle in the swarm (SS)
ri random number which are uniform distribution in the

range [0, 1]
ci positive coefficients
w inertia weight
vid velocity of each particle
xid current position of each particle
gbest best solution of the neighbors
pbest best location of each particle
pid position of the pbest
pgd position of the gbest
k iteration number
K number of total iterations
P0 initial steady-state power level
Pd desired power
U control action
e error
fe fitness function related to tracking error (set point er-

ror)
fOS% fitness function related to percent overshoot
NT size of data in a transient
Pmax maximum or peak value of the reactor power at the

peak time
W penalty coefficient for violation
OS% percent overshoot
ess steady-state error
tmax duration of a transient
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