Annals of Nuclear Energy 69 (2014) 278-291

Contents lists available at ScienceDirect

Annals of Nuclear Energy

journal homepage: www.elsevier.com/locate/anucene

Review and characterization of best candidate isotopes for burnup analysis and monitoring of irradiated fuel

T. Akyurek, L.P. Tucker, S. Usman*

Department of Mining and Nuclear Engineering, Missouri University of Science & Technology, Rolla, MO 65409, USA

ARTICLE INFO

Article history: Received 24 September 2013 Received in revised form 19 December 2013 Accepted 23 December 2013 Available online 14 March 2014

Keywords: Nuclear fuel Burnup credit Gamma spectroscopy Half lives

ABSTRACT

This research is an extension of feasibility study of MOX fuel online burnup analysis. A multitude of fission products identified as candidates have been scrutinized for their suitability of burnup analysis and spent fuel analysis. Best isotopes obtained for analysis by investigating half-life, fission yield, branching ratios, production modes, thermal neutron absorption cross section and fuel matrix diffusivity. ¹³²I and ⁹⁷Nb are identified as good isotope candidates for on-line burnup analysis. ¹³²I is also a good candidate for plutonium/uranium discrimination due to the large difference in the fission yield of the isotope. For interim storage monitoring the well-established cesium isotopes appears to be the best choices unless the data gaps are addressed. Other alternate for cesium for interim monitoring is ¹³¹I, ¹⁴⁰La, and ⁹⁵Nb at the present time. Selection of one over the other choice must be made based on application. For the long-term storage monitoring ⁹⁴Nb is the only attractive candidate. It has a low diffusion rate of ~10⁻¹¹ cm²/s, an almost zero neutron absorption cross section making it burnup history independent and decent gamma yield of 1.44E–09. In addition, the paper also identifies the data gaps for developing a robust burnup analysis tool using gamma spectroscopy.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Between 1977 and 1981 commercial reprocessing was banned by the United States government, interrupting the U.S. reprocessing industry. The U.S. moratorium on reprocessing did not, however, discourage European countries such as France from developing the technology and incorporating Mixed OXide (MOX) fuel into their nuclear fuel cycle. While other nations pursued reprocessing, the U.S. chose to invest in the Yucca Mountain Nuclear Waste Repository. However, with Yucca Mountain no longer under consideration, the U.S. is reconsidering its fuel cycle options, and taking a second look at reprocessing and MOX fuel (Nuclear waste repository safe for future generations, 2010; Energy Institute, 2010).

Decades of operation in France have demonstrated that MOX fuel can be incorporated into a UO₂ fueled core without risking the safety of the plant or increasing the risk of proliferation (Shaw Areva MOX Services, LLC, 2008). Now the U.S. power industry is investigating the fuel. In 2005, Duke Energy commissioned AREVA to build four MOX fuel assemblies for the Catawba Nuclear Station. The Megatons to Megawatts program is another major commitment by the U.S to

E-mail address: usmans@mst.edu (S. Usman).

incorporate MOX into the fuel cycle. This program is an agreement between the United States and Russia to dispose of approximately 35 metric tons (MT) of weapons-grade plutonium by converting it into MOX fuel to be burned in commercial nuclear power plants. The MOX fuel assemblies will be manufactured at the Department of Energy's Savannah River Site through a contract with Duke COG-EMA Stone & Webster. As of July 2012, this program has converted 450 MT of weapons-grade uranium to low-enriched fuel for power reactors (United States Enrichment Corporation, 2013). Thorium fueled reactors are also under consideration because of

Thorium fueled reactors are also under consideration because of the advantages of the thorium fuel cycle. Thorium is abundant in the earth's crust. With roughly four times the concentration of uranium, it can be found across the globe. And because ²³⁸U is not usually present in thorium fuel there are fewer transuranic elements in the spent fuel (International Atomic Energy Agency, 2005).

Regardless of how the U.S. fuel cycle changes, better tools and techniques for measuring burnup and monitoring spent fuel will be required. One attractive option for non-destructively examining spent fuel is gamma spectroscopy. In this work, a multitude of fission products identified as candidates for burnup analysis and spent fuel monitoring, as proposed by Dennis and Usman (2006), are scrutinized for their suitability for such a program. Consideration is given to half-life, fission yield, branching ratios, thermal neutron absorption cross section, production modes and fuel

^{*} Corresponding author. Address: 225 Fulton Hall, 1870 Miner Circle, Rolla, MO 65409, USA. Tel.: +1 (573) 341 4745.

matrix diffusivity. Based on these parameters, the best isotopes for non-destructive burnup analysis and spent fuel monitoring have been identified.

2. Traditional tools, techniques and conventional Isotopes for burnup analysis

A report was published by US Nuclear Regulatory Commission (Bevard et al., 2009) discussing various aspects of spent fuel monitoring and the requirements of the measurements system. There are two broad groups of techniques available; "passive" measurement of delayed neutrons and gamma and "active" interrogation by either a pulsed neutron source or a weak steady state source and subsequently monitoring the gamma and/or neutron emissions. For safe transportation of spent nuclear fuel it is critical to have a reliable and efficient monitoring system capable of on-site, accurate measurement of the spent fuel to ensure compliance with the safety criteria. Gamma measurement is one non destructive technique (NDA) for spent fuel monitoring, analyzing the radiation emitted by irradiated nuclear fuel assemblies to determine

parameters such as burnup, cooling time, and a qualitative verification of the irradiation history (Håkansson et al., 1993). These parameters can be calculated with the help of flux measurements in the core and following the path of the fuel assembly as it proceeds with its burnup cycle. These calculations can be experimentally verified by the above mentioned techniques. (Willman et al., 2006a) have investigated ¹³⁷Cs ($T_{1/2}$ = 30.1 years), ¹³⁴Cs ($T_{1/2}$ = 2.1 years) and 154 Eu ($T_{1/2}$ = 8.6 years) as indictors of cooling time and irradiation history since these isotopes dominate the gamma spectrum of spent fuel after five years of cooling time (Bevard et al., 2009). Moreover, ¹³⁷Cs has very small neutron absorption cross sections and hence negligible burnup history dependence and its fission yields from ²³⁵U and ²³⁹Pu is approximately the same. (Willman et al., 2006b) has reported the success of using ¹⁵⁴Eu while (Dennis and Usman, 2010) reported the potential of using ¹⁰⁶Ru. Because of their relatively long half-lives, these isotopes are most useful for analyzing used fuel after about 10 years of cooling. Focus of this manuscript is to analyze new isotopes for their suitability as a burnup indicator. The conventional fission isotopes (¹³⁷Cs, ¹⁵⁴Eu, ¹⁰⁶Ru, etc.) already considered for burnup

Table 1

Reference isotopes	for burnu	p analysis and	spent fue	l monitoring	(Dennis	and Usman	, 2006).
--------------------	-----------	----------------	-----------	--------------	---------	-----------	----------

Simulation energy (keV)	Potential isotope	Energy (MeV)	Photon emission probablity	Simulation energy (keV)	Potential isotope	Energy (MeV)	Photon emission probablity
76.6110	²⁴³ Am	0.07467	0.66	617.82	^{108m} Ag	0.61437	0.90393
	²⁰⁶ Bi	0.074969	0.54146		⁴³ K	0.61749	0.80514
	⁶¹ Co	0.067412	0.85		^{190m} Os	0.61608	0.9862
	⁷³ Se	0.067	0.7729601		¹⁴⁴ Pm	0.61801	0.98597
	⁴⁴ Ti	0.07838	0.97619	626.15	⁴³ K	0.61749	0.80514
93.2640	⁴⁹ Cr	0.090639	0.532		¹⁴⁴ Pm	0.61801	0.98597
101.5900	⁶⁷ Ga	0.93311	0.357		^{148m} Pm	0.62997	0.88998
134.9000	^{99m} Tc	0.14051	0.8907	659.46	^{137m} Ba	0.66165	0.8998
143.2200	^{99m} Tc	0.14051	0.8907		¹³² Cs	0.66769	0.97423
	^{85m} Kr	0.15118	0.75278		¹³⁰ I	0.66854	0.96129
159.8700	⁵² Fe	0.016868	0.966		¹³² I	0.66769	0.987
	⁵⁶ Ni	0.15838	0.98795		⁹⁷ Nb	0.6579	0.9809
176.5300	⁵² Fe	0.016868	0.966		¹²⁶ Sb	0.66633	0.99619
	¹¹¹ Ln	0.17128	0.9024	667.78	^{137m} Ba	0.66165	0.8998
193.1800	⁹⁰ Y	0.20251	0.96631		⁹⁸ Tc	0.65241	0.99745
	^{166m} Ho	0.18442	0.726		¹³² Cs	0.66799	0.97423
	^{190m} Os	0.18673	0.702		¹³⁰ I	0.66854	0.96129
226.4900	^{85m} Sr	0.23169	0.84725		¹³² I	0.66769	0.987
	¹³² Te	0.22816	0.88	692.76	⁹⁷ Nb	0.6579	0.9809
276.4400	²⁰³ Hg	0.27919	0.773		¹²⁶ Sb	0.66633	0.99619
	²⁰³ Pb	0.27919	0.768		⁹⁴ Nb	0.70293	1
318.0800	¹⁹² Ir	0.31651	0.82853	717.74	¹⁴⁴ Pm	0.69649	0.99492
	⁵ 1Ti	0.32008	0.929		¹²⁶ Sb	0.695	0.99619
	¹⁵⁷ Dy	0.32616	0.938		^{108m} Ag	0.72295	0.90499
326.4000	^{194m} Ir	0.32845	0.929	751.05	^{166m} Ho	0.71169	0.54087
	⁵¹ Ti	0.32008	0.929		¹²⁶ Sb	0.7205	0.53794
	¹⁵⁷ Dy	0.32616	09.38		²⁴⁴ Am	0.746	0.67
359.71	⁷³ Se	0.3611	0.965		⁵² Mn	0.74421	0.9
	^{190m} Os	0.36109	0.9488		^{97m} Nb	0.74336	0.9796
	¹³¹ I	0.36448	0.81164	759.37	⁹⁸ Tc	0.74535	0.99819
376.36	⁴³ K	0.37276	0.87273		⁹⁵ Zr	0.75671	0.55345
	²⁰⁴ ¹¹ Pb	0.89915	0.99164		⁹⁵ Nb	0.76579	0.99808
	²⁰⁰ TI	0.36794	0.873	767.7	⁹⁵ Tc	0.76579	0.9382
434.64	^{108III} Ag	0.43393	0.89881		⁹³ Zr	0.75671	0.55345
	202 11 69mm	0.43956	0.915		⁶² Br	0.77649	0.8331
101.0	¹⁸¹ 20	0.43863	0.94889	702.02	¹⁵² []	0.77261	0.76196
484.6	19/mz	0.48203	0.825	792.68	⁹⁵ ND	0.76579	0.99808
	87M	0.48286	0.97	000.33	134C-	0.76579	0.9382
	90mxz	0.4847	0.9394	809.33	210m	0.79584	0.854
402.02	190Q-	0.47953	0.9099		2060:	0.7997	0.9896
492.93	103 D	0.50255	0.9778		58 C -	0.8031	0.9889
	87x	0.49708	0.889		136C-	0.81076	0.9943
52450	- Y 130r	0.4847	0.9394		166m1	0.8185	0.997
534.56	133r	0.53609	0.99		56NI	0.81031	0.57136
	135mVo	0.52987	0.0032	1502	96Tc	0.01100	0.00000
601 17	134Cc	0.52050	0.00997	1592	210 T 1	0.01234	0.0206
001.17	124cb	0.0047	0.970		1401 2	0.7997	0.5650
	עכ	0.00271	0.370001		Ld	1.5905	0.3343

Download English Version:

https://daneshyari.com/en/article/8069313

Download Persian Version:

https://daneshyari.com/article/8069313

Daneshyari.com