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a b s t r a c t

We propose the use of a hybrid polynomial chaos expansion using both Legendre and Hermite polyno-
mials to assess the combined effect of uniform and Gaussian distributed uncertainties. We show that
the hybrid method converges exponentially with respect to the polynomial order of the hybrid basis.
We also show that mapping the uniformly distributed uncertainties to a Gaussian probability then
expanding with a purely Hermite basis results in a severely deteriorated convergence rate.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years a great deal of research has been dedicated to
quantifying the effect that input parameter uncertainties have on
the output of a computational model. There are many methods
available for solving such problems, see (Cacuci, 2003; Stefanou,
2009) for a review of some, but the technique that we are inter-
ested in, which has received considerable attention over the last
ten years, is the method of polynomial chaos (Wiener, 1938; Xiu
and Karniadakis, 2002; Ghanem, 1999).

The method of polynomial chaos has been applied across many
disciplines including fluid flow (Najm, 2009), structural dynamics
and neutronic systems (Williams, 2007; Williams, 2010). In the
original work by Wiener (Wiener, 1938), the random fluctuation
of model parameters (input or output) was represented with an
expansion of Hermite polynomials with Gaussian random vari-
ables. For any random process, this expansion converges in the L2

sense to any L2 functional. In other words, the Hermite expansion
converges with increasing polynomial order to any random process
with finite variance. However, the optimal (exponential) rate of
convergence is only achieved for Gaussian processes. For other
non-Gaussian processes, the rate may be substantially reduced.
This deterioration in convergence behaviour led to the work by
Xiu and Karniadakis (2002) who suggested an optimal description
of different distribution types by using a more general framework
called Askey chaos. This is also referred to as generalised polyno-
mial chaos (GPC). In this approach the orthogonal polynomial
chaos basis is chosen so that the weight function is the same as
the probability density function of the random variables

representing the uncertainty. In their work (Xiu and Karniadakis,
2002), the authors showed exponential convergence rates for each
Askey polynomial for its corresponding stochastic process. They
also demonstrated the sub-optimal convergence rates when the
optimal Askey polynomial was not employed.

In many engineering applications, including reactor physics and
criticality calculations, a situation may arise where the uncertain-
ties associated with input parameters are described with different
probability distributions. For example, a reactor lattice pin cell may
have nuclear data uncertainties described with a Gaussian distri-
bution whereas the temperature of the fuel and moderator, etc.
are described using a uniform distribution. In this note, we extend
the work in Xiu and Karniadakis (2002). We propose a combination
of the optimal expansions for each probability distribution to form
a hybrid polynomial basis. We first show that a tensor product of
different Askey polynomials is a basis for the tensor product of
their corresponding probability spaces. We then illustrate the the-
ory using a simple numerical example which employs both uni-
form and Gaussian distributions.

2. Theory

When the inputs to a model have an associated uncertainty, the
output(s) are also uncertain. To model this uncertainty, the input
uncertainty is represented parametrically by a set of random vari-
ables which we denote n ¼ fn1; . . . ; nMg. Here M is the total number
of random variables. More generally this may be written as

XðnÞ ¼ LðaðnÞÞ ð1Þ

where X is the response parameter, aðnÞ ¼ fa1ðnÞ; . . . ;aNðnÞg is the
set of all uncertain input parameters (N being the total number)
and L is a mathematical operator describing the model.
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The mean, variance and higher order statistics of the response
parameter can be calculated via integration, namely

lX ¼
Z

dn1 . . .

Z
dnMXðnÞpðnÞ ð2Þ

vX ¼
Z

dn1 . . .

Z
dnMX2ðnÞpðnÞ � l2

X ð3Þ

with l and v representing the mean and variance respectively. The
function pðnÞ is the probability density function (PDF) of the random
variable n. For the case when all variables in the set n are indepen-
dent, the PDF has the form

pðnÞ ¼
YM
i¼1

pðniÞ ð4Þ

2.1. Polynomial chaos for mixed uncertainties

The set nðhÞ, introduced above, is defined on a probability space
denoted by ðH;B;lÞ where H is the set of all possible outcomes
(called the sample space), h is a random event belonging to H
and B is a non-empty collection of subsets of H and is called a sig-
ma-field on H. The symbol l is a probability measure on B and is a
function that maps B onto the real space [0, 1]. Let us now denote
L2ðH;B;lÞ as the space of real random variables X with finite sec-
ond order moments

E½X2� ¼
Z

XðnÞ2pðnÞdn <1 ð5Þ

where E is the mathematical expectation and pðnÞ is the PDF as de-
fined in Eq. (4). Equipped with an inner product

< X1X2 >¼ E½X1X2� ¼
Z

X1ðnÞX2ðnÞpðnÞdn ð6Þ

this space is a Hilbert space.
If XðhÞ 2 L2ðH;B;lÞ and all n are statistically independent then,

according to Xiu and Karniadakis (2002), XðnðhÞÞmay be expanded
as follows:

XðnðhÞÞ ¼ a0I0 þ
X1
i1¼1

ai1 I1ðni1 ðhÞÞ þ
X1
i1¼1

Xi1

i2¼1

ai1 ;i2 I2ðni1 ðhÞ; ni2 ðhÞÞ

þ
X1
i1¼1

Xi1

i2¼1

Xi2

i3¼1

ai1 ;i2 ;i3 I3ðni1 ðhÞ; ni2 ðhÞ; ni3 ðhÞÞ þ . . . ð7Þ

where Inðni1 ðhÞ; . . . ; nin ðhÞÞ denotes the Wiener–Askey polynomial
chaos of order n in terms of the random vector n ¼ fni1 ; . . . ; ning.
For notational convenience, we may write

XðnÞ ¼
X1
i¼1

aiUiðnÞ ð8Þ

where there is a one-to-one correspondence between the functions
Inðni1 ; . . . ; nin Þ and UiðnÞ.

Consider now a random process Y which belongs to the space
H ¼ H1 �H2 where H1 ¼ L2ðH1;B1;l1Þ and H2 ¼ L2ðH2;B2;l2Þ
are Hilbert spaces. Supposing that f/ig and fgig are GPC bases
for H1 and H2 respectively, then we wish to know if we may ex-
pand Y with the following

Y ¼
X1
i¼1

X1
j¼1

aij/iðnÞgjðfÞ ð9Þ

For X1 2 H1 and X2 2 H2 we may write

X1ðnÞ ¼
X

i

ci/iðnÞ X2ðfÞ ¼
X

j

djgjðfÞ ð10Þ

where / and g are the optimal polynomial bases corresponding to
the probability measures l1 and l2 respectively. We can see
straight away that the hybrid basis is orthogonal from the following

h/1 � g1;/2 � g2i ¼ h/1;/2ihg1;g2i ð11Þ

we also have
P

ijcij2 <1 and
P

jjdjj2 <1. Thus
P

ijjcidjj <1, and
therefore,

P
ijjcidjj <1. Consequently, we know thatP

i<m;j<ncidj/i � gj converges as n;m!1. Therefore,

X1 � X2 �
X

i<m;j<n

cidj/i � gj

�����
�����

�����
�����! 0 as m;n!1 ð12Þ

Thus, f/i � gjg is a basis for H1 �H2.
The mean and variance of Eq. (9) can now be calculated in the

usual way, namely

Y ¼ a00 ð13Þ

vY ¼
X1
i¼1

X1
j¼1

aij < /2
i >< g2

j > ð14Þ

3. Numerical example

As an example, we investigate the simple expression for the
infinite multiplication factor k1:

k1ðn; fÞ ¼
mðnÞRf

RaðfÞ
ð15Þ

where m is the average number of neutrons produced per fission and
Rf and Ra are the fission and absorption cross sections respectively.
We assume that the absorption cross section and m have an associ-
ated uncertainty which we represent parametrically using the ran-
dom variables n and f, namely

mðnÞ ¼ �mð1þ RnÞ n 2 ½�1 :1� ð16Þ

RaðfÞ ¼ Ra 1þ
ffiffiffi
3
p

Rf
� �

f 2 ½�1 : 1� ð17Þ

The fission cross section is assumed to have no uncertainty.
Here R is the relative uncertainty and is defined as

R ¼
ffiffiffiffi
v
p

l
ð18Þ

In Eqs. (16) and (17) we note that the random variables have differ-
ent supports. With the following probability distributions:

pðnÞ ¼ 1ffiffiffiffiffiffiffi
2p
p exp � n2

2

( )
ð19Þ

pðfÞ ¼ 1
2

ð20Þ

we can see that m is described by a Gaussian distribution and Ra by a
uniform distribution.

The mean and variance of Eq. (32) using (2) and (3) can be cal-
culated exactly and are given by the following:

lk1 ¼
Z 1

�1

Z 1

�1
k1ðn; fÞpðnÞpðfÞdndf

¼ �
�mRf

2RaR
ffiffiffi
3
p log

1�
ffiffiffi
3
p

R

1þ
ffiffiffi
3
p

R

( )
ð21Þ

vk1 ¼
Z 1

�1

Z 1

�1
k2
1ðn; fÞpðnÞpðfÞdndf� l2

k1

¼
�m2Rf

2ð1þ R2Þ
Rað1� 3R2Þ

� l2
k1 ð22Þ

We must note that solutions to Eqs. (21) and (22) are only available
for values of R 6 1ffiffi

3
p � 57:7%.
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