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a b s t r a c t

The traditional α-factor model has focused on the occurrence frequencies of common cause failure (CCF)
events. Global α-factors in the α-factor model are defined as fractions of failure probability for particular
groups of components. However, there are unknown uncertainties in the CCF parameters estimation for
the scarcity of available failure data. Joint distributions of CCF parameters are actually determined by a
set of possible causes, which are characterized by CCF-triggering abilities and occurrence frequencies. In
the present paper, the process of α-decomposition (Kelly-CCF method) is developed to learn about
sources of uncertainty in CCF parameter estimation. Moreover, it aims to evaluate CCF risk significances
of different causes, which are named as decomposed α-factors. Firstly, a Hybrid Bayesian Network is
adopted to reveal the relationship between potential causes and failures. Secondly, because all potential
causes have different occurrence frequencies and abilities to trigger dependent failures or independent
failures, a regression model is provided and proved by conditional probability. Global α-factors are
expressed by explanatory variables (causes’ occurrence frequencies) and parameters (decomposed α-
factors). At last, an example is provided to illustrate the process of hierarchical Bayesian inference for the
α-decomposition process. This study shows that the α-decomposition method can integrate failure
information from cause, component and system level. It can parameterize the CCF risk significance of
possible causes and can update probability distributions of global α-factors. Besides, it can provide a
reliable way to evaluate uncertainty sources and reduce the uncertainty in probabilistic risk assessment.
It is recommended to build databases including CCF parameters and corresponding causes’ occurrence
frequency of each targeted system.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

As a conclusion from probabilistic risk assessment (PRA) for
nuclear power plants (NPPs), common cause failures (CCFs) are
significant challenges to the availability of safety systems with
redundant components. WASH-1400 defined common mode fail-
ure as multiple failures that result from a single event. The single
event can be any one of a number of possibilities: a common
property, process, environment, or external event [1]. NUREG/CR-
4780 defined common cause events as a subset of dependent
events in which two or more component fault states exist at the
same time, or in short intervals, and are direct results of a shared
cause [2].

In past years, great achievements are gained to understand and
model the mathematical mechanism of CCF. Fleming [3] intro-
duced the most widely used single parameter model to be applied
to CCF analysis, which is known as the β-factor model. Thereafter,

for a more accurate analysis of systems with higher level of
redundancy, Fleming and Kalinowski [4] extended the β-factor
model to Multiple Greek Letter model (MGL). The α-factor model
was developed by Mosleh and Siu [5], which can be applied to
multi-component system by using total component failure prob-
ability and the fractions of CCF probability. NUREG/CR-4780 [2]
and NUREG/CR-5485 [6] provided basic principles, models and
guidance for analysts performing CCF analysis. Noticeably, NUREG/
CR-5485 proposed generic prior distributions of α-factors for
various system sizes. Therefore, a question would be asked that
how could analysts update the distributions of CCF parameters,
since α-factors of every system differ from each other and from
time to time.

Along with the development of CCF modeling methodology and
database, the understanding of CCF occurring-mechanism is pro-
gressing. United States Nuclear Regulatory Commission (U.S. NRC)
has been endeavoring to develop a database for CCF parameters
estimation [7]. NUREG/CR-5497 provided the parameter estima-
tion employing two quantitative models: MGL model and α-factor
model [8]. Furthermore, since 21st century, the emphasis of CCF
analysis has been converted from simple mathematical models to
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more complicated event assessment. Based on U.S. commercial
NPPs event data, NUREG/CR-6819 illustrated further understand-
ing of CCF insights for emergency diesel generators, motor-
operated valves, pumps, and circuit breakers [9]. Updated version
of NUREG/CR-6268 presented the process of event data collection
and grouped the hierarchy of proximate failure causes, which
provided a way to gain further understanding of the CCF events’
occurring [10].

Rasmuson et al. extended the previous work on the treatment
of CCF in event assessment. Fully expanded fault trees were used,
and it is specifically showed that all terms in the basic parameter
model (BPM) for each failure model. They quantified the condi-
tional probability of CCF, given independent failures or failures
with common-cause potential, and the asymmetry within a
common-cause component group (CCCG) is considered [11]. Kelly
et al. proposed the preliminary framework of a causality-based
model via Bayesian networks which has the potential to overcome
limitations of BPM. This model aimed to tell the conditional failure
probability of remaining equipment given observed equipment
failures and associated causes. Furthermore, it aimed to provide
cause-specific quantitative insights into likely causes of failures
[12].

As one family of graphical representation of distributions,
Bayesian network uses a directed graph (where the edges have a
source and a target) to represent a set of independencies and to
factorize a distributions [13,14]. This advantage of probabilistic
graphical models can promote the visual analysis of CCF. Besides,
Bayesian statistical inference provides a way of formalizing the
process of learning from data to update beliefs in accord with
recent notions of knowledge synthesis [15].

Based on the frequentist probability, the widely applied BPM
(β-factor model, MGL model, α-factor model, etc.) enables the
uncomplicated evaluation of CCF probability. However, there are
unknown uncertainties in the parameter estimation, limitations to
identify the risk of potential causes and it is impossible to arrive at
posterior distribution as a result of sparse failure data or data-
missing problem. Recent research reveals that CCF analysis is
transferring from pure mathematical modeling to causality-based
analysis. In order to reduce the uncertainty in CCF parameter
estimation, Bayesian regression models can be applied to combine
difference data sources of CCF failure events and cause occurrence.
Therefore, posterior distributions of less uncertainty can be
obtained.

In this paper, the authors propose the α-decomposition process
to estimate CCF parameters. The α-decomposition process is
named as Kelly-CCF method since Dana Kelly firstly proposed
the preliminary framework of a causality-based Bayesian network
for CCF analysis: (a) based on the causal inference for CCF, global
α-factors are decomposed as a regression model with explanatory
variables (causes’ occurrence frequencies) and parameters
(decomposed α-factors); (b) Bayesian inference is applied to arrive
at posterior distributions for global α-factors and decomposed
α-factors, which quantitatively represent the CCF risk on component
level and cause level, respectively; (c) a hypothetical database is
constructed and recommended to be built for the α-decomposition
analysis. This database must include causes occurrence frequen-
cies and either α-factors or CCF event records for specific systems.

2. α-factor model for standard CCF analysis

Before the introduction of the α-decomposition process, a
review of the standard α-factor model is necessary for the purpose
of easy understanding of the notation. As shown in Fig. 1, let us
consider a system of three identical components A, B, and C from
the perspective of a two-out-of-three success logic [6]. The

common-cause component group (CCCG) is A, B, and C. There, a
group of components identified in the process of CCF analysis is
called as a CCCG. The minimal cutsets of this system failure are:

A,Bf g; A,Cf g; B,Cf g; A,B,Cf g
For the consideration of CCF, the fault tree is expanded to

include corresponding common-cause basic event (CCBE). Take
component A as an example as shown in Fig. 2.

The cutsets of component A are

AIf g; CABf g; CACf g; CABCf g
Similarly, the cutsets of component B failure are

BIf g; CABf g; CBCf g; CABCf g
The cutsets of component C failure are

CIf g; CACf g; CBCf g; CABCf g
Here, AI is the failures of component A from independent

causes, BI is the failures of component B from independent causes,
CI is the failures of component C from independent causes; CAB is
the failures of components A and B from common causes, CAC
is the failures of components A and C from common causes, CBC is
the failures of components B and C from common causes and CABC
is the failures of components A, B and C from common causes.

Using the rare event approximation, the system failure prob-
ability of the two-out-of-three system is given by

PðSÞ≅PðAIÞPðBIÞþPðAIÞPðCIÞþPðBIÞPðCIÞþPðCABÞþPðCAC ÞþPðCBCÞþPðCABC Þ
ð1Þ

In Eq. (1), the rare event approximation is defined as that the
probability of the simultaneous occurrence of two independent
failures is assumed as zero. It can be written as

PðaþbÞ ¼ PðaÞþPðbÞ−Pða⋅bÞ≅PðaÞþPðbÞ ð2Þ
The failure probability of component A is decomposed as

PðAtÞ ¼ PðAIÞþPðCABÞþPðCAC ÞþPðCABCÞ ð3Þ
Here, At is the all failures of component A, and P(X) is the

probability of event X.
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Fig. 1. Component-level fault tree of system.
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Fig. 2. Expanded CCBE fault tree for component A.
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