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a b s t r a c t

A new multi-level surface rebalancing (MLSR) approach has been developed, aimed at enabling an
improved non-linear acceleration of nodal flux iteration convergence in 3D steady-state and transient
reactor simulation. This development is meant specifically for anticipating computational needs for solv-
ing envisaged multi-group diffusion-like SPN calculations with enhanced mesh resolution (i.e. 3D multi-
box up to 3D pin-by-pin grid). For the latter grid refinement regime, the previously available multi-level
coarse mesh rebalancing (MLCMR) strategy has been observed to become increasingly inefficient with
increasing 3D mesh resolution. Furthermore, for very fine 3D grids that feature a very fine axial mesh
as well, non-convergence phenomena have been observed to emerge. In the verifications pursued up
to now, these problems have been resolved by the new approach. The novelty arises from taking the
interface current balance equations defined over all Cartesian box edges, instead of the nodal volume-
integrated process-rate balance equation, as an appropriate restriction basis for setting up multi-level
acceleration of fine grid interface current iterations. The new restriction strategy calls for the use of a
newly derived set of adjoint spectral equations that are needed for computing a limited set of spectral
response vectors per node. This enables a straightforward determination of group-condensed interface
current spectral coupling operators that are of crucial relevance in the new rebalancing setup. Another
novelty in the approach is a new variational method for computing the neutronic eigenvalue. Within this
context, the latter is treated as a control parameter for driving another, newly defined and numerically
more fundamental eigenvalue to unity. This paper presents a rigorous derivation of the new approach,
followed by a comparison on convergence efficiencies, for a number of 3D full core nodal grid resolution
regimes, between the previously available multi-level rebalancing setup and the new multi-level surface
rebalancing concept. The surface rebalancing methodology and a number of related concepts are covered
in the patents EP2091049, EP2287855, EP2287854 and EP2287853 that were granted in 2012.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In a number of AREVA’s 3D reactor simulation tools (such as
PANBOX (Böer et al., 1992)), PRISM (Grummer, 2000) and ARTE-
MIS™ (Hobson, 2008), a default use of multi-level rebalancing
(van Geemert, 2006) enables a substantial run time reduction for
industrial whole-core fuel cycle and transient simulations. Once
implemented, the efficiency of a multi-level coarse mesh rebalanc-
ing (MLCMR) setup can be quantified in terms of the enabled final
run time reduction compared to unaccelerated scenarios. This suc-
cess is determined by the effected flux error decay rate and the cost
of a single nodal multi-group SPN iteration sweep on the one hand,
versus the computational cost of a single multi-level rebalancing

cycle. Anticipating the trend to pursue multi-group (i.e. 8- up to
16-group) SPN simplified transport computations for industrial
applications on very fine spatial grids, a new multi-level surface
rebalancing (MLSR) concept has been developed. Recent investiga-
tions have shown that, on top of the benefit of doing rebalancing at
the level of the nodal interfaces instead of merely the nodal vol-
umes, it pays off to extend the rebalancing grid hierarchy with a
number of additional space-energy levels corresponding to coars-
ened (i.e. numerically lumped) neutron energy grids. Previously,
a restriction from the fine multi-group space-energy mesh to the
finest rebalancing mesh meant lumping all neutron energy group
spectral information per node into a single, lumped group. This is
a simple and effective concept for accelerating few-group coarse
nodal diffusion computations. However, for accelerating substan-
tially more expensive multi-group fine grid computations (i.e. with
8 or more groups) this approach can be improved. Specifically, one
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can do this by not only doing restrictions over nodal interfaces but
by also defining intermediate coarsened space-energy rebalancing
levels featuring a specific energy group hierarchy defined by cer-
tain lumping strategies. From this, a generically enhanced numer-
ical proximity results between different rebalancing space-energy
grids and the 3D multi-group nodal diffusion iterations. Combined
with carefully pursued algebraic manipulations for making sure
that the rebalancing operators are optimally sparse, and the use
of efficient and lean iteration approaches at rebalancing level, a sig-
nificant upgrade of error decay rate proved achievable.

All rebalancing concepts presented here do boil down to form-
ing space-energy-coarsened blocks of different terms. These may
pertain to the process-rate balance equations in MLCMR or the
interface current balance equations that are the restriction basis
of the new MLSR approach that is the main topic of the current pa-
per. Subsequently, dimensionless multiplicative correction factors
(‘‘driving factors’’) are solved repeatedly that are associated with
nodal volume and/or interface and which are applied for non-lin-
ear acceleration of the iterative solution process. Upon overall con-
vergence, all driving factors converge to 1. This concept is
somewhat different from the also well-known coarse mesh finite
difference (CMFD) methodology (Lewis, 2005; Yoon and Joo,
2008; Tatsumi and Yamamoto, 2003). The latter does have the
same non-linear acceleration intention and is characterized by a
systematic recomputation of coarse mesh fluxes at the projected
coarser mesh level. From there, correction factors are derived as ra-
tios between CMFD-iterated coarse mesh fluxes vs. previously pro-
jected coarse mesh fluxes that followed from the integration of
previous fine-mesh fluxes. Within the CMFD framework, the pro-
jection of the nodal equations to a finite-difference-like coarse
mesh system for merely (coarse mesh) nodal fluxes features the
systematic accompanying recomputation of coupling coefficients
that enable the formulations of the successive (and converging)
CMFD systems. These coupling coefficients follow from solutions
of 2-node problems based on Fick’s law. Both the MLCMR and
the MLSR approaches presented in this paper are direct multi-grid
projection methods that do not require the computation and sub-
sequent use of additional coupling coefficients in the overall multi-
level iteration setup.

This document describes the developed MLSR strategy and pre-
sents reports on numerical verification and observed impacts on
overall computational efficiency. It was observed that, in case of
using classical coarse mesh rebalancing (van Geemert, 2006), the
average flux error decay gets substantially poorer when going to
higher grid resolution. Furthermore, for very fine 3D grids that fea-
ture a very fine axial mesh as well, non-convergence phenomena
have been observed to emerge. In all verifications pursued thus
far, these problems have been resolved completely by the MLSR
approach.

2. A brief history of rebalancing applications for accelerated
solution of 3D nodal diffusion equations

Coarse mesh rebalancing, which was proposed originally as a
‘‘variational acceleration technique’’ for basic diffusion iterations
by Wachspress (1966) in the 1960s, provides a suppression of
otherwise slowly decaying low-frequency non-fundamental mode
components in the not-yet-converged diffusion solution. This is
realized through a systematic multiplicative correction of nodal
fluxes and interface outcurrents, prior to each full core nodal diffu-
sion sweep, with iteratively obtained ratios between coarse mesh
rebalanced and prebalanced fluxes (Nakamura, 1977). These ratios,
conventionally referred to as driving factors, emerge from restarted
preconditioned Krylov subspace procedures defined at the compu-
tationally substantially cheaper coarse mesh equation level. Upon

their application, they push down the long wavelength non-funda-
mental mode components of the nodal diffusion residual to a very
significant extent. The acceleration effect realized in this way de-
pends on the numerical proximity of the highest coarse mesh level
in the multi-level hierarchy to the full-core diffusion level. Because
of the multiplicative rather than additive nature of the correction,
coarse mesh rebalancing clearly belongs to the class of non-linear
acceleration approaches (Trottenberg et al., 2001). Speed-up factors
higher than 10, compared to unaccelerated computations, are com-
mon for typical steady-state and transient calculations with reac-
tor codes that are accelerated using multi-level rebalancing.

The currently available rebalancing standard (van Geemert,
2006) in PANBOX, PRISM and ARTEMIS™ is aimed at suppressing
node-to-node volume-averaged neutronic balance residuals and
yielding nodal driving factors (i.e. N driving factors for N volume
nodes in the system) with which nodal fluxes and nodal interface
currents are corrected multiplicatively before pursuing subsequent
computationally expensive nodal diffusion iterations. The principal
effect of rebalancing on coarsened space-energy grids is the sup-
pression of slowly converging non-fundamental modes in the
eigenspectrum which, in an unaccelerated iteration procedure,
would lead to dramatically slow convergence or even convergence
stagnation.

With an error reduction ratio r, a commonly required five-or-
ders-of-magnitude decrease in error would require 5 times
log 1

10

� �
= logðrÞ iterative steps. For example, with r = 0.98, these

are about 570 steps, and with r = 0.998, these amount to about
10,750 steps. Pursuing this many such operations would take
clearly far too much time within the framework of large-scale
practical applications. This applies even within the context of
present-day computational power and in spite of the relatively
low computational cost of a single matrix–vector multiplication
pertaining to the iterative solution of nodal diffusion equations
based on the nodal expansion method (NEM) (Finnemann et al.,
1977). Now, for well-converging full core steady-state and tran-
sient cases, the currently available rebalancing methodology can
generate asymptotic error-reduction ratios of between 0.8 and
0.9 between successive NEM-iterations. For more demanding
cases, ratios of between 0.9 and 0.95 still enable acceptable run
times. Tedious cases with ratios of higher than 0.95, in spite of
applying rebalancing, are known (for example, stuck rod cases
under cold conditions). In case no acceleration would be applied,
dramatically poor error reduction ratios between 0.98 and 0.997
are common in any case (indicating a typically very small differ-
ence between the eigenvalues of the fundamental mode and the
first higher mode). Generally, each additional 9 behind the com-
ma makes the convergence about 10 times as slow. This means
that the currently available rebalancing methodology is impera-
tive for the ability to pursue full core three-dimensional flux com-
putations within practical time frames. And, in case one would
like to be able to pursue full core computations on increasingly
finer 3D grids, one should always be interested in noticeable
robustness and efficiency improvements for a rebalancing meth-
odology as principal convergence accelerator. Now, one needs to
keep in mind that the effectiveness of rebalancing depends heav-
ily on its ability to capture, at the level of the restricted equations,
the higher 3D modes of the SPN equations on the full core grid. An
aspect of utmost importance here is the eigenspectrum density of
the lower modal part, and in particular the numerical distance of
the first higher eigenvalues from the fundamental eigenvalue. Re-
cent numerical investigations have confirmed that, in terms of
numerical proximity of neighboring eigenvalues, the eigenspec-
trum is substantially denser on 3D full core grids than on 2D full
core grids. The eigenspectrum can be expected to become even
denser when making the 3D grid finer (i.e. from 1box/fa to mul-
ti-box/fa up to 3D pin-by-pin resolution).
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