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a b s t r a c t

Half-value thickness of aluminum absorbers has been investigated experimentally and theoretically.
Cs-137, Tl-204 and Sr-90/Y-90 radio-isotopes were used as beta sources. Inconsistency between experi-
mental measurements and standard theoretical calculations has been removed with the help of fractional
calculus. The experimental and theoretical half-thickness values have been found equivalent for
fractional derivative order �0.3.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Transitions of electrons and positrons through different materi-
als have been the subject of many studies since discovery of radio-
activity (Leonard and Pobereskin, 1948; Seliger, 1952, 1955; Libby,
1956; Takhar, 1967, 1968; Thontadarya and Umakantha, 1971).
When the beta particles pass through a material, such as alumi-
num, some of them are absorbed. Absorption rates depend on both
the energy of the particles and thickness of material. The relation-
ship between beta-ray intensity and thickness of absorber material
is given by (Leo, 1994).

dIðxÞ
dx
¼ �lmIðxÞ ð1Þ

where I, lm (cm2/g) and x (g/cm2) are the intensity of the beta par-
ticle, the mass attenuation coefficient and the thickness of the ab-
sorber, respectively. lm is defined as the linear attenuation
coefficient (l), divided by the density of material (q):

lm ¼
l
q
�

The standard solution of the above equation is

IðxÞ ¼ I0expð�lmxÞ ð2Þ

where I0 represents initial intensity. Half-value thickness of an ab-
sorber is thickness of the absorber material where the intensity of

beta particle entering it is reduced by one half and can be calculated
as,

x1=2 ¼
ln2
lm
� ð3Þ

Examination of the absorption of beta particles in different
materials and analysis of mass attenuation coefficient of absorbers
continues today (Batra and Sehgal, 1981; Ram et al., 1982; Burek
and Chocyk, 1996; Gurler and Yalcin, 2005; La Rocca and Riggi,
2009; Ermis and Celiktas, 2012). A theoretical method for deter-
mining the range of electrons and positrons in Al, Cu and Au were
reported by Batra and Sehgal (1981). A semi-empirical relation be-
tween maximum energy of electron and mass attenuation coeffi-
cient was derived, and mass attenuation coefficients and range of
beta particles in Be, Al, Cu, Ag and Pb was investigated by Ram
et al. (1982). A theory of mass attenuation coefficient was proposed
and related parameters were computed by Burek and Chocyk
(1996). Gurler and Yalcin (2005) obtained the mass attenuation
coefficients of beta particles for Al, Cu and Au using a practical the-
oretical method. Mass attenuation coefficients of Al, brass and
cardboard using 90Sr were investigated and compared to GEANT
simulations by La Rocca and Riggi (2009). Beta attenuation coeffi-
cients were determined by means of timing method by Ermis and
Celiktas (2012).

In the present work, the decreasing intensity of beta particles,
after they pass through the varying thicknesses of aluminum
absorbers, has been experimentally investigated using 90Sr/90Y,
137Cs and 204Tl radioisotopes. Mass attenuation coefficient and
half-value thickness of Al absorber are found from the experimen-
tal data. Furthermore, half-value thickness has been theoretically
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calculated using Eq. (3). However, there is an inconsistency be-
tween the experimental and standard theoretical results of half-va-
lue thickness. To resolve this inconsistency, Eq. (1) represents the
changing intensity of radiation as related to the thickness of the
absorber has been solved using fractional calculus. Thus, even if
different beta sources are used, a single fractional derivative order
is obtained for aluminum absorber.

2. Fractional calculus

Fractional calculus generalizes the derivative of a function to a
non-integer order (Oldham and Spanier, 1974; Miller and Ross,
1993; Podlubny, 1999). Within the 20th century, the numerical
applications of physical problems have shown that fractional cal-
culus is an alternative mathematical tool (Carpinteri and Mainardi,
1997; Hilfer, 2000).

Fractional mathematics and its some applications have been ex-
pressed by Oldham and Spanier (1974); Sabatier et al. (2007) and,
Gorenflo and Mainardi (2008). The most commonly used defini-
tions of fractional derivatives are Riemann-Liouville (RL), Caputo
and Grünwald-Letnikov’s fractional derivatives.

Fractional RL integral operator is given as:

JafðtÞ ¼ 1
CðaÞ

Z t

0
ðt� sÞa�1ds ð4Þ

where a is any positive real number and C (a) is the Gamma
function.

On the other hand, the RL fractional derivative operator is de-
fined as,

Daf ðtÞ :¼
dm

dtm
1

Cðm�aÞ
R t

0
f ðsÞ

ðt�sÞaþ1�m ds
h i

; m� 1 < a < m;

dm

dtm f ðtÞ; a ¼ m:

8<: ð5Þ

The Caputo fractional derivative operator is given by the
definition:

Da
Cf ðtÞ :¼

1
Cðm�aÞ

R t
0

f ðmÞðsÞ
ðt�sÞaþ1�m ds; m� 1 < a < m;

dm

dtm f ðtÞ; a ¼ m

8<: ð6Þ

where a is the order of the fractional derivative and m is the small-
est integer greater than a. The Caputo and the RL fractional deriva-
tive operators are not equivalent to each other;

Da
Cf ðtÞ ¼ Daðf ðtÞ �

Xm�1

k¼0

f ðkÞð0þÞÞ: ð7Þ

Since the Caputo fractional derivative includes the initial values
of function and its integer order derivatives (Podlubny, 1999), it is
preferred to the RL derivative in physical applications. Though, the
RL fractional derivative of a constant is different zero, in the Caputo
fractional derivative it is zero (Podlubny, 1999; Carpinteri and Mai-
nardi, 1997; Naber, 2004).

3. Fractional solution of attenuation equation

In order to establish the fractional attenuation equation, the
first order time derivative is replaced by fractional derivative of or-
der a in Eq. (1). Thus, the fractional attenuation equation is given
by

Da
CIðxÞ ¼ �la

mIðxÞ ð8Þ

where Da
C denotes the Caputo fractional derivative of order a. lm

must be raised to the same order as the fractional derivative to pre-
serve the dimension of Eq. (8) (Naber, 2004). For a = 1, the fractional

attenuation equation given by Eq. (8) reduces to the standard one
given in Eq. (1).

To solve Eq. (8), the definitions in Eq. (7) is firstly used,

IðxÞ �
Xm�1

k¼0

IðkÞðxÞjx¼0
xk

k!
¼ �la

mJaIðxÞ ð9Þ

where
Pm�1

k¼0 IðkÞðxÞjx¼0 ¼ Ið0Þ ¼ I0 represents the initial intensity. Eq.
(9) can be re-written as

IðxÞ � I0 ¼ �la
mJaIðxÞ: ð10Þ

Then, the Laplace transform is performed on Eq. (10)

I
�
ðsÞ ¼ I0

sa�1

sa þ la
m

ð11Þ

where I
�
ðsÞ is the Laplace transform of I(x), and s is the Laplace trans-

form parameter. One can express Eq. (11) as a series expansion

eIðsÞ ¼ I0

X1
k¼0

ð�1Þklak
m

sakþ1 � ð12Þ

Performing the inverse Laplace transform to each of the terms
of the series expansion in Eq. (12) following result is obtained

IðxÞ ¼ I0

X1
k¼0

ð�1Þklak
m xak

Cðakþ 1Þ ð13Þ

IðxÞ ¼ I0Eað�la
mxaÞ ð14Þ

where Eað�la
mxaÞ represents the Mittag-Leffler function widely

used in fractional calculations. This function is defined as,

EaðzÞ ¼
X1
n¼0

zn

Cðnaþ 1Þ ð15Þ

and E1(z) = exp (z).

4. Experimental

The experiments were performed in Nuclear Research Labora-
tory of Physics Department of Dumlupınar University. The experi-
mental setup includes a Geiger-Muller (GM) probe with sample
holder and counter. The radioactive sources are 90Sr/90Y, 137Cs
and 204Tl beta sources, whose activity were 0.1lCi, 1lCi and
1lCi, respectively. The dimensions of Al absorbers were
7 cm � 7 cm and thickness of one absorber was 2.76 mg/cm2. The
distance between the absorber and the source was 1 cm. To con-
duct measurements, the absorbers were placed between beta
sources and GM. Background and dead-time corrections were per-
formed to obtain net beta counts.

5. Results and discussions

The experimental and calculated values (i.e. standard solution
of Eq. (1)) of half-value thicknesses of Al absorber for different beta
particle sources were not equivalent. To resolve this discrepency,
Eq. (1) has been defined using Caputo fractional derivative as Eq.
(8) and the solution of Eq. (8) has been obtained as Eq. (14).

The experimental measurements of change in intensity of beta
particle versus the thickness of absorbers are shown for 90Sr/90Y,
137Cs and 204Tl beta sources in Fig. 1. As can be seen in the figure,
the initial intensity, its half-value and half-value thickness of Al ab-
sorber are I0 = 6268, I0

2 ¼ 3134, x1/2 = 157.1500 mg/cm2 for 90Sr/90Y,
I0 = 29830, I0

2 ¼ 14915, x1/2 = 44.4296 mg/cm2 for 137Cs and
I0 = 2182, I0

2 ¼ 1091, x1/2 = 34.6977 mg/cm2 for 204Tl, respectively.
In Fig. 2, logarithm of the data in Fig. 1 is shown. The mass atten-
uation coefficients of the absorbers for different sources have been
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