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a b s t r a c t

Non-equilibrium radiation diffusion is an important mechanism of energy transport in inertial
confinement fusion, astrophysical plasmas, furnaces and heat exchangers. In this paper, an analytical
solution to the non-equilibrium Marshak diffusion problem in a planar slab and spherical shell of finite
thickness is presented. Using Laplace transform method, the radiation and material energy densities are
obtained as functions of space and time. The variation in integrated energy densities and leakage currents
are also studied. In order to linearize the radiation transport and material energy equation, the heat
capacity is assumed to be proportional to the cube of the material temperature and the opacity to be
independent of temperature. The steady state energy densities show linear variation along the depth
of the planar slab, whereas non-linear dependence is observed for the spherical shell. The analytical
energy densities show good agreement with those obtained from finite difference method using small
mesh width and time step. The benchmark results obtained in this work can be used to validate and ver-
ify non-equilibrium radiation diffusion computer codes in both planar and spherical geometry.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The time dependent non-equilibrium radiation transport equa-
tion is non-linearly coupled to the material energy equation
(Pomraning, 1973; Mihalas and Mihalas, 1984). Also the material
properties have complex dependence on the independent vari-
ables. As a result, the time dependent thermal radiation transport
problems are commonly solved numerically. Several numerical
methods are in use for this purpose, namely the discrete ordinates
(Mishra et al., 2006, 2011; Ghosh and Menon, 2010), finite volume
(Kim et al., 2010), Monte Carlo (Fleck and Cummings, 1971), hybrid
stochastic-deterministic (Densmore, 2006; Connolly et al., 2012),
or the approximate methods like the Eddington approximation
(Shettle and Weinman, 1970), heat conduction (Goldstein, 2010)
or the diffusion approximations (Dai and Woodward, 1998; Knoll
et al., 2001; Ober and Shadid, 2005). Benchmark results for test
problems are necessary to validate and verify the numerical codes
(Ensman, 1994). Analytical solutions producing explicit expres-
sions for the radiation and material energy density, integrated den-
sities, leakage currents, etc. are the most desirable.

In the literature, considerable amount of efforts have been
applied for solving the radiation transport problem analytically.
Marshak obtained a semi-analytical solution by considering radia-
tion diffusion in a semi-infinite planar slab with radiation incident

upon the surface (Marshak, 1958). Assuming that the radiation and
material fields are in equilibrium, the problem admits a similarity
solution to a second order ordinary differential equation which
was solved numerically (Kass and O’Keeffe, 1966). The results were
extended for non-equilibrium radiation diffusion by assuming that
the specific heat is proportional to the cube of the temperature and
the opacity is constant (Pomraning, 1979; Su and Olson, 1996).
This assumption linearized the problem providing a detailed ana-
lytical solution. As the radiative transfer codes are meant to handle
an arbitrary temperature dependence of the material properties,
the obtained solutions serve as a useful test problem (Ganapol
and Pomraning, 1983; Su and Olson, 1997, 1999). Using the same
linearization, 3T radiation diffusion equations were solved for
spherical sources in an infinite medium (McClarren and Wohlbier,
2011). All available results on the non-equilibrium radiative trans-
fer problems in planar and spherical geometry consider systems
having infinite or semi-infinite extension. Benchmarks involving
finite size systems have been limited either to the heat conduction
or equilibrium diffusion approximation (Williams, 2005; Olson and
Henderson, 2004; Liemert and Kienle, 2012).

In this paper, we solve the time dependent non-equilibrium
radiation diffusion problem for finite size systems in both planar
and spherical geometry. The coupled system of radiation diffusion
and material energy equations have been linearized by assuming
the opacity to be independent of temperature and the specific heat
to be proportional to the cube of the material temperature.
Non-equilibrium diffusion codes can be more easily validated
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and verified against these benchmark results because there is no
need to consider a slab or spherical medium of very large size for
avoiding boundary effects. Analytical expressions for all the quan-
tities of interest can be obtained for finite slab/shell width and
parameter values relevant to practical problems. This work can
be extended to multi-dimension using separation of variables
and Laplace transform method or the eigenfunction expansion
method to obtain analytical series solution in a manner similar
to the multilayer heat conduction (Jain et al., 2010).

The remainder of the paper is organized as follows. In Section 2,
the analytical solution for the finite planar slab and spherical shell
is derived followed by Section 3 on numerical finite difference
method. In Section 4, the results for the radiation and material en-
ergy densities, leakage currents, integrated quantities, etc. are plot-
ted and physically explained. Finally, conclusions are given in
Section 5.

2. Analytical solution

A radiation field in space is described by the distribution of the
intensity of radiation w.r.t., frequency m, to space~r, to the direction
of radiant energy transfer X

!
and is expressed in terms of the inten-

sity of radiation Iðm;~r; X!; tÞ (Zeldovich and Raizer, 1966). The time
dependent, multi-frequency, non-equilibrium, classical radiation
transport equation (RTE) is given by (Pomraning, 1973)
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where j is the opacity (absorption cross-section), rs is the scatter-
ing cross-section, c is the speed of light and Sðm;~r; tÞ denotes the rate
of energy emission due to spontaneous processes.

Eq. (1) is an integro-differential equation and because of its
partly differential character, requires both spatial and temporal
boundary conditions. Also, it is very complicated as the dependent
variable, the specific intensity depends upon seven independent
variables. Hence, in general, to obtain analytical solutions, it is nec-
essary to make some approximations. Firstly, the concept of local
thermodynamic equilibrium (LTE) assumption is introduced. It is
assumed that the properties of the matter are dominated by atomic
collisions which establish thermodynamic equilibrium locally at
position~r and time t, and the radiation field, even if it deviates sub-
stantially from the equilibrium Planck distribution, does not affect
this equilibrium. The state of the material is then described by two
parameters, namely the temperature and density. The emission
term is then given by

Sðm;~r; tÞ ¼ jðm;~r; tÞBðm;~r; tÞ;

with Planck’s function Bðm;~r; tÞ ¼ 2hm3

c2 exp hm
kBTð~r;tÞ

� �
� 1

� ��1
. Here, kB

is Boltzmann’s constant, h is Planck’s constant and Tð~r; tÞ is the
local material temperature. The next approximation is the Grey
approximation in which the opacities are assumed to be fre-
quency independent so that the RTE may be integrated over
all frequencies. If the specific intensity of radiation is almost iso-
tropic, the diffusion approximation can be used. It is applicable
for optically thick bodies where the gradients of radiation energy
density are small. The basic assumption underlying the diffusion
approximation for radiative transfer is that the angular depen-
dence of the specific intensity can be represented by the first
two terms in a spherical harmonic expansion. Neglecting hydro-
dynamic motion and restricting the medium to be an ideal fluid
(no viscous or heat conduction effect), the one group radiative
transfer equation in the diffusion approximation and the mate-
rial energy (ME) balance equation on neglecting the scattering
terms are (Pomraning, 1973)
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where Eð~r; tÞ is the radiation energy density, D ¼ 1=ð3jð~r; tÞÞ is the
diffusion coefficient, a is the radiation constant, and Cv(T) is the spe-
cific heat of the material.

2.1. Planar slab

We consider a planar slab of finite thickness which is purely
absorbing and homogeneous occupying 0 6 z 6 l. The medium is
at zero temperature initially. At time t = 0, a constant diffuse radi-
ative flux (Finc) is incident on the surface at z = 0 as shown in Fig. 1.
The one dimensional planar radiation diffusion equation along
with the material energy balance equation are (Pomraning, 1973)
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To remove the nonlinearity in the radiation diffusion (Eq. (4))
and material energy equation (Eq. (5)), opacity j is assumed to
be independent of temperature and specific heat Cv is assumed
to be proportional to the cube of the temperature i.e., Cv = aT3.
The Marshak boundary condition on the surface at z = 0 is given by
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And that at z = l is
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The initial conditions on these two equations are

Eðz;0Þ ¼ Tðz;0Þ ¼ 0: ð8Þ

The RTE and the ME are recast into the dimensionless form by
introducing the dimensionless independent variables given by

x �
ffiffiffi
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and new dependent variables given by
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With these new variables, the RTE and ME take the dimension-
less form

e
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¼ @
2uðx; sÞ
@x2 þ vðx; sÞ � uðx; sÞ; ð11Þ

@vðx; sÞ
@s

¼ uðx; sÞ � vðx; sÞ; ð12Þ

with the initial conditions

uðx;0Þ ¼ 0; ð13Þ
vðx;0Þ ¼ 0: ð14Þ

Fig. 1. Diffuse radiation flux incident on the left surface of a slab of thickness z = l.
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