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a b s t r a c t

Industrial systems subject to failures are usually inspected when there are evident signs of an imminent

failure. Maintenance is therefore performed at a random time, somehow dependent on the failure

mechanism. A competing risk model, namely a Random Sign model, is considered to relate failure and

maintenance times. We propose a novel Bayesian analysis of the model and apply it to actual data from a

water pump in an oil refinery. The design of an optimal maintenance policy is then discussed under a

formal decision theoretic approach, analyzing the goodness of the current maintenance policy and

making decisions about the optimal maintenance time.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Complex systems and components subject to failures are the
object of preventive maintenance in order to avoid the more or less
disruptive consequences of their failure. Examples range from
nuclear power plants to heating systems and car tires. Both
maintenance and failure have a cost, with the former being less
expensive in general. At the same time, policies based on too early
maintenance could be unacceptable since there should be an
excessive use of new components well before failing of old ones
and the continuity of services provided by system could not be
guaranteed because of maintenance. Failure and maintenance
times are naturally intertwined and there is a quest for optimal
maintenance policies that act just before failures.

Different models have been proposed in the literature about
optimal maintenance policies, going back, for example, to Barlow
and Hunter [1]. Here we concentrate on a particular case, in which
data are available as either failure or maintenance time and
maintenance is performed when some warnings denote a possible
incipient failure. Such situation arises quite naturally under a
condition-based maintenance policy, which is addressed in many
papers (e.g. [2]). Both maintenance and failure are modeled by
random variables, as in the Random Sign model developed by
Cooke [3], which will be considered in this paper. The model is a
particular example of competing risks model, widely used in

reliability and survival analysis. A review about competing risks
is provided by Crowder [4].

The Random Sign model, illustrated in Section 2, considers the
case of a component whose failure time is subject to a possible right
censoring, due to maintenance; here censoring is supposed inde-
pendent of the age X at which the component would expire but,
given that the component is censored, the censoring time may
depend on X.

The Random Sign model seems suitable for analyzing data about
an oil refinery water pump, see Section 4. A limited number of data
are collected and the actual maintenance policy is unknown. At the
same time, company experts can provide opinions on the failure
process of the pump and the maintenance policy followed so far.
Maintenance and repair costs can be assessed as well, and
combined with knowledge about the failure process to develop
optimal maintenance policies using a decision theoretic approach.
Therefore, a Bayesian analysis of the Random Sign model, novel in
the literature, is presented in Section 3, along with a utility-based
optimal maintenance policy; both are applied to the pump data in
Section 4. Concluding remarks are presented in Section 5.

2. Random Sign model

Since Cox [5], lack of identifiability of marginal distributions of
some competing risk models has been discussed in the literature;
we will not further discuss this problem and refer the interested
reader to, for example, Bunea [6]. Cooke [3] proposed the Random
Sign censoring, which is probably the simplest model allowing for
identifiability of marginal distributions. The model assumes that a
component, which would fail at time X, could be subject to right
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censoring. The event that the lifetime could be censored is
independent of the age X but, once censoring occurs, then censoring
time depends on X. A typical situation modeled by Random Sign
censoring is about censoring occurring when some warning about
failing age X is available. In particular, in our case study, censoring is
due to maintenance and, therefore, an intervention occurs in
advance to avoid failure once some warning denotes an incipient
failure. We present the definition of a Random Sign censoring
model (see, for example, [7, p. 359]).

Definition 1. Given a random variable X, consider Y ¼ X�Wd,
where W is a random variable with 0oWoX and d¼ f�1,1g is also
a random variable independent of X. The variable Z � ½minðX,YÞ,
1ðYoXÞ�, with 1ð�Þ denoting the set function, is called a Random
Sign censoring of X by Y.

Bunea et al. [7, p. 359] present an alternative definition using the
indicator function 1ðXoYÞ; our definition above should lead to no
confusion.

3. Bayesian analysis

We consider the Random Sign censoring model given in
Definition 1 and denote maintenance and failure times by Y and
X, respectively. Unlike the more standard notation used in
Definition 1, we take d¼ 2e�1, so that e¼ f0,1g (failure and
maintenance, respectively). Then e and X are independent and X

and Y are related by

Y ¼ X�ð2e�1ÞW , ð1Þ

0oWoX. Let T¼min(X,Y) and note that Z ¼ ðT ,eÞ. It follows that

f ðT ¼ t,e¼ 0Þ ¼ f ðX ¼ t,e¼ 0Þ ¼ f ðX ¼ tÞf ðe¼ 0Þ, ð2Þ

given the assumed independence of e and X. In this case W takes any
value in (0, t). Here we use f to denote any density; from its
argument, it is evident which random variable is related to.

Conversely, censoring implies

f ðT ¼ t,e¼ 1Þ ¼ f ðY ¼ t,e¼ 1Þ ¼ f ðY ¼ tje¼ 1Þf ðe¼ 1Þ

¼ f ðe¼ 1Þ

Z
f ðX ¼ tþw,W ¼wÞ dw

¼ f ðe¼ 1Þ

Z
f ðX ¼ tþwjW ¼wÞf ðW ¼wÞ dw, ð3Þ

since X¼Y+W, with Y¼t and W40. Distributions on e and X are to
be specified for both cases, whereas the distribution on W has to be
specified only for the censoring case. In this case W has the meaning
of the ‘‘time elapsed between the censoring (maintenance) time
and the failure time which would have been observed if no
censoring had been performed’’. Now we present a particular
(parametric) proposal for these distributions.

3.1. Models for failure and censoring times

We consider a Gamma model Gða,lÞ for the failure time X, with
a,l40. This is a standard failure time model with sufficient
flexibility, and adequate when light tails are expected. We now
turn to define the distribution for W jX ¼ x. This distribution should
have support in [0,x]. Moreover, since we expect W, the elapsed
time between maintenance and (unobserved) failure, to be defi-
nitely closer to 0 rather than to its largest value X¼x, we should
have that this conditional distribution is decreasing. A reasonable
assumption would be

f ðW ¼wjX ¼ xÞ ¼
a�1

x

w

x

� �a�2

IðwÞ
ð0,xÞ, ð4Þ

a truncated power law. We choose 1oar2, so that (4) is non-
increasing. The shape of this distribution is not dependent on x and
is solely governed by the parameter a.

Under such assumptions on the distributions of X and WjX, it
can be easily shown that, marginally, W � Gða�1,lÞ, Y je¼ 1� EðlÞ
and f ðX ¼ xjW ¼wÞ ¼ lexpf�lðx�wÞgIðw,1ÞðxÞ (E is the exponential
distribution). As a special case, a¼ 2 implies X � Gð2,lÞ, WjX ¼

x� Uð0,xÞ and W � EðlÞ. Regarding the censoring mechanism, we
take e� BerðyÞ. This model, arising from the Gamma model for
failure times (restricting aAð1,2�) and the truncated power law
model for WjX, leads to a setting where all marginals are well
defined, having known distributions, and is governed by the
parameters ðy,l,aÞ, providing reasonable flexibility for typical
applications.

3.2. Prior choice

We consider the parameter vector Z¼ ðy,l,aÞ and we take
independent priors y� Beða1,b1Þ, l� Gða2,b2Þ and a� Uð1,2Þ.

The choice of the hyperparameters is a complex aspect in
Bayesian analysis and it is important to explore some features of
the involved random variables, especially the observable ones, to
specify their values. It is worth observing that X � Gða,lÞ and
Y � EðlÞ imply that EðXÞ ¼ a=l and EðYÞ ¼ 1=l, so that l¼ 1=EðYÞ and
a¼ EðXÞ=EðYÞ. The choice of the hyperparametersa2 andb2 could be
performed noting that

EðXÞ ¼ E½EðXja,lÞ� ¼ EðaÞE 1

l

� �
¼ EðaÞ b2

a2�1
: ð5Þ

Similarly, using VarðXÞ ¼ E½VarðXja,lÞ�þVar½EðXja,lÞ�, it can be
proved that

C2
X ¼

1

a2�2
fða2�1Þðm�1

a þC2
a Þþ1g, ð6Þ

where CX and Ca are the coefficients of variation (standard deviation
over the mean) of X and a, and ma ¼ EðaÞ. To ensure the existence
of E(X) and CX

2 we need a242; furthermore, (5) and (6) imply
a2 ¼ 1þðC2

Xþ1Þ=ðC2
X�ðm�1

a þC2
a ÞÞ and b2 ¼ m�1

a EðXÞða2�1Þ. Both a2

and b2 are positive if

CX 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m�1
a þC2

a

q
:

The last condition is a property of our model, and for the uniform
prior assumed for a entails to ma ¼ 3=2, C2

a ¼ 1=27 and thus CX 4
0:8388; the a priori coefficient of variation for X cannot be lower
than 0.8388. If we elicit an a priori expected value mX and a standard
error sX for X (e.g. arising from the manufacturer’s specifications for
continuous operation of the system), we take CX ¼ sX/mX to obtain
a2 and b2 as above.

Regarding the choice of parameters for the Beta prior on y,
they could be chosen specifying some quantiles or by observing
that Eðyja1,b1Þ ¼ a1=ða1þb1Þ and Varðyja1,b1Þ ¼ a1b1=ðða1þb1Þ

2

ða1þb1þ1ÞÞ. When scarce prior information is available about
y, a default non-informative prior may be stated as a1 ¼ b1 ¼ 0:5
(see [8]).

3.3. Likelihood

Suppose data are given by ðt ,eÞ ¼ fðti,eiÞg
n
i ¼ 1; therefore the

likelihood would be

f ðt ,ejZÞ ¼
Yn

i ¼ 1

f ðti,eijZÞ, ð7Þ

where f ðti,eijZÞwould be given by (2) and (3), depending on e¼ 0 or
1, respectively. The integrals involved in (3) are an evident draw-
back of the approach using the full likelihood (7). Therefore, we
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