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a b s t r a c t

In this paper a whole-core transport technique using response matrix and collision probability (CP) meth-
ods is presented for large-scale, highly-heterogeneous reactors. Integral transport method has been used
to provide sufficient accuracy for response matrix formation of pin cell sized node with considerably less
computational expense. Ray tracing is efficiently applied using macro-bands. For practical application,
double P2 (DP2) Legendre polynomial expansion is applied to approximate interface angular flux that is
used to couple nodes. The proposed method is based on a sound mathematical foundation and leads
to dramatically reduced memory requirements in contrast to the conventional transport method. This
method is also applied to several problems such as C5G7, containing mixed oxide (MOX) and UO2 fuel
assemblies, to show the effectiveness of the proposed method. The results clearly indicate that the
method is quite promising and acceptable.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Reactor core analysis is a dominant procedure leads to eco-
nomic and safe operation of nuclear power plants. At present,
whole-core analysis of reactors is accomplished primarily through
a series of detailed transport calculations for each lattice cell in
infinite medium to produce spatially homogenized and energy col-
lapsed lattice cross-sections and flux discontinuity factors (Smith,
1986). These parameters are finally used in a few-group coarse
mesh diffusion methods (Lawrence, 1986). The fuel pin powers
are subsequently calculated using reconstruction techniques. The
corresponding approximation procedures have been widely inves-
tigated and prosperously applied to analysis of reactors.

With increasing heterogeneity of reactor cores, the limitations
due to homogenization procedure, such as infinite-medium bound-
ary condition, and diffusion theory, which breaks down because of
large flux gradients, are evident. In recent years, increasing efforts
have been devoted to overcome the restriction through using more
highly sophisticated homogenization procedure or whole-core
transport calculations.

To achieve equivalence cross-section in highly heterogeneous
media, a high-order homogenization method based on high-order
boundary condition perturbation theory is proposed which can
consider cross-sections and discontinuity factors variation
(Rahnema and McKinley, 2002). Clarno and Adams (2005) pro-
posed that the effect of unlike neighboring assemblies can be

captured from four-assembly calculations. They used a superposi-
tion technique to reduce the number of calculations.

Whole-core transport calculations can be considered as a confi-
dent solution to the uncertainties imposed by homogenization-
reconstruction techniques. To address these complicated and vital
issues, CRX had been constructed to treat two-dimensional geom-
etries based on the method of characteristics and specific features,
such as modular ray tracing and parallel computation (Hong and
Cho, 1998). De-CART was also developed for direct whole-core cal-
culation that utilized the planar method of characteristics plus
coarse mesh finite difference method (Cho and Joo, 2006; Joo
et al., 2004). However, these transport methods introduce a high
computational cost. Therefore, Mosher and Rahnema (2006) devel-
oped an incident flux response expansion method for heteroge-
neous coarse mesh transport problems. In this approach, the
response function of unique coarse mesh is generated and coupled
using expanded angular flux at the mesh boundaries (Forget et al.,
2004). In progress of finite element method, VARIANT (Carrico
et al., 1992; Palmiotti et al., 1995) was introduced to employ the
finite subelement form of the variational nodal transport method.
In this approach, heterogeneous response matrices are formed at
the pin cell level, and spherical harmonics treat the angular vari-
ables at the node interfaces (Smith et al., 2004; Smith et al.,
2003). Villarino and Stamm’ler (1984) also developed a heteroge-
neous coarse mesh method that response matrices were computed
using the CP techniques. The coarse meshes were coupled by co-
sine interface currents in slab geometry, and accurate results were
produced.

The CP method is an accurate and versatile transport method
(Sanchez and McCormick, 1982) that was applied to cell
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calculation codes such WIMS (Askew et al., 1966) and CPM (Ahlin
and Edenius, 1977). The cosine and double P1 (DP1) Legendre
expansions of angular flux had been developed and applied in
two-dimensional fuel assembly cell calculation codes such as CAS-
MO (Edenius et al., 1990; Häggblom et al., 1975), PHOENIX (Weiss
and Stamm’ler, 1977), and APOLLO (Kavenoky and Sanchez, 1987).

In this paper, we developed a new heterogeneous whole-core
transport method. The response matrices have been generated
using the CP method at the level of the pin cell. To couple the
pin cells, DP2 Legendre polynomial expansion is used, and Carlvik’s
method is employed to accurately and efficiently evaluate the CPs
(Carlvik, 1967).

The remainder of the paper is organized as follows. In Section 2,
integral particle transport equation is presented. Section 3 dis-
cusses the concept of response matrix formation and its derivation
using integral transport equation. In Section 4, the CPs are derived
and presented. Section 5 represents expression of response matri-
ces in term of the CPs. The ray tracing procedure is discussed in
Section 6. Section 7 presents benchmark results obtained by devel-
oped computer program HERPAT. Finally, conclusion and remarks
are given in Section 8.

2. Integral particle transport

The integral particle transport equation is obtained through
rewriting the streaming operator, X�r, of the Boltzmann particle
transport equation to the directional derivative, d/dR, along the
particle flight path. The derivative is removed through using the
integration factor and integrating along the particle travel (Lewis
and Miller, 1993). Therefore, the two-dimensional multi-group
integral particle transport equation can be written as
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where the source is defined as
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suppressing the energy group index, g, /(r, X) is the angular flux at
location r and direction X; /� is the incoming angular flux; Qsc is
the fixed source; s is the optical distance; Rs(r, X0 ? X) is the scat-
tering cross-section from X0 to X; vRf is the nu-fission cross-sec-
tion; k is the effective multiplication factor; v is the fission
spectrum and h is polar angle.

As depicted in Fig. 1, the flux is obtained through summing up
the uncollided particles at location rs0 in surface s and integration of
the uncollided particles that are generated along the direction X at
location r0 in volume V.

The outgoing angular flux can be obtained as:

/g
þðrs;XÞ ¼ /g

�ðrs0 ;XÞe�
sg ðrs ;rs0 Þ

sin h þ
Z Rs0

0
dR’

Q gðr0;XÞ
sin h

e�
sg ðrs ;r0 Þ

sin h ð3Þ

The boundary condition is considered as:
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with T denoting the reflection and transmission operator and n+ is
outward normal vector on the surface.

3. Response matrix formulation

The core of the reactor is partitioned into heterogeneous space
elements consisting of regions and bounding surface segments. The
space elements are coupled together by requiring continuity of the
partial currents across the nodal interfaces. The responses of each
space element should be obtained for determining flux of the re-
gions and the partial currents across the segments of the node (Lin-
dahl and Weiss, 1981; Forget et al., 2004).

The responses can be classified into four categories as genera-
tion, transmission, entrance and exit. The generation response ma-
trix consists of the contribution of the region flux from the
generated particle in the entire regions, the transmission response
matrix tackles the contribution of the incoming angular flux mo-
ment to the outgoing current moment, the exit and the entrance
response matrices deal with the contribution of the generated par-
ticle in the entire regions to the outgoing angular flux moment and
the contribution of the entered particle to flux of the region,
respectively.

In this paper, for developing the response matrices, the follow-
ing spherical harmonic expansion is used:
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where /g
�lm is the moment lm of the segment angular flux in group g,

and ± represents the outward or the inward particles and wlm is the
orthogonal function:
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with h denoting polar angle; x is azimuthal angle; dm0 is Kro-
necker delta function and Plm is associated Legendre polynomial.
The orthogonality relation of the half-range spherical harmonics
is:Z
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with n denoting normal vector on the surface and ± represents the
outward or the inward particles at the surface segment.

As shown in Fig. 2, the space element is divided into homoge-
neous regions that the flux is approximated to be flat. The surface
is also divided into segments that the current is assumed to be flat.
Moreover, the source assumed to be isotropic. Therefore, the fol-
lowing equations can be obtained by integrating Eq. (1) over angle
X and the volume and Eqs. (3) and (4) over angle X and the
surface:
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Fig. 1. Coordinate characterizing particle transport.
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