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a b s t r a c t

Numerically stable Monte Carlo burnup calculations of nuclear fuel cycles are now possible with the pre-
viously derived Stochastic Implicit Euler method based coupling scheme. In this paper, we show that this
scheme can be easily extended to include the thermal–hydraulic feedback during the Monte Carlo burnup
simulations, while preserving its unconditional stability property. At each time step, the implicit solution
(for the end-of-step neutron flux, fuel nuclide densities and thermal–hydraulic conditions) is calculated
iteratively by the stochastic approximation; the fuel nuclide densities and thermal–hydraulic conditions
are iterated simultaneously. This coupling scheme is derived as stable in theory; i.e., its stability is not
conditioned by the choice of time steps.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The purpose of this paper is to further develop methods allow-
ing for realistic and accurate Monte Carlo burnup calculations of
fuel cycles of critical reactors. A variety of Monte Carlo burnup
codes, linking various Monte Carlo neutron transport codes to
depletion codes or built-in procedures, is available at present, e.g.
MCB2 (Cetnar et al., 2000), MOCUP (Moore et al., 1995), MONTE-
BURNS2 (Poston and Trellue, 1999), ALEPH (Haeck et al., 2006),
MCNPX2.6 (Fensin et al., 2010), SERPENT (Leppänen, 2012), and
many others.

The accuracy of the Monte Carlo fuel cycle calculations (the
difference between the computed and correct data) is affected
by a number of factors, such as the statistical precision of the cal-
culation, errors in nuclear data libraries, approximations made to
the reactor core model, and also the numerical stability of the cal-
culation. The inadequate numerical stability of the coupling
schemes in the existing Monte Carlo burnup codes has been iden-
tified as an important problem (Dufek and Hoogenboom, 2009;
Dufek et al., 2013b); the instability is driven by a strong neutronic
feedback from the nuclide field. While a stable coupling scheme
was recently derived based on the new Stochastic Implicit Euler
(SIE) method (Dufek et al., 2013a), the scheme assumed fixed

thermal–hydraulic conditions during the whole fuel cycle calcula-
tion. Yet, especially in boiling water reactors (BWRs) the coolant
(moderator) density distribution does change during the fuel cy-
cle, and the changes should be simulated. Since the coolant rep-
resents a strong reactivity feedback in these reactors, adjusting
the coolant density distribution over the time steps during Monte
Carlo burnup calculations may cause numerical instability even
when a stable coupling scheme is applied on the fuel depletion
process.

In this paper, we eliminate the assumption of the fixed ther-
mal–hydraulic conditions that are commonly applied to reactor
core models in Monte Carlo burnup calculations. The thermal–
hydraulic feedback is realised here by extending the previously de-
rived Stochastic Implicit Euler (SIE) based coupling scheme for
Monte Carlo burnup calculations. The extended coupling scheme
iterates the end-of-step neutron flux, fuel nuclide densities and
thermal–hydraulic conditions simultaneously during an inner iter-
ation at each time step. The unconditional stability property of this
coupling scheme is preserved.

The paper is organised as follows. Section 2 states the governing
equations for neutron transport criticality, fuel depletion, thermal–
hydraulic conditions and additional constrains. In Section 3 we
derive the Stochastic Implicit Euler (SIE) method based coupling
scheme for Monte Carlo burnup calculations with the thermal–
hydraulic feedback, and suggest the possible algorithms of
implementing the method in Monte Carlo burnup codes. Section
4 summarises our conclusions.
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2. Governing equations

The geometry and material properties of a nuclear reactor can
be described by NF(r) – the nuclide field in fuel and other static
materials, NR(r) – the nuclide field in locations of control rods,
NC(r) – the nuclide field in coolant (moderator), and the tempera-
ture field T(r). The elements of the nuclide field vectors denote
concentrations of various nuclides at the position r. The fundamen-
tal-mode neutron flux /(r,X,E) is then determined by these nuclide
fields and the boundary conditions.

The nuclide field NF(r) changes during the reactor operation due
to the depletion process driven by the neutron flux /(r,X,E). Due to
its dependence onNF(r), the fundamental-mode neutron flux
changes during the reactor operation as well. Consequently, the
changes in the neutron flux are reflected into the changes inNC(r).
The purpose of fuel cycle calculations is to determine the changes
in the nuclide fields and /(s) � /(r,X,E,t) during the whole fuel
cycle.

The above problem can be described by a system of coupled
equations: the burnup (ODE) equation that describes the time
change of the nuclide field, the criticality (eigenvalue) neutron
transport equation that gives the fundamental-mode neutron flux
in the core, and thermal–hydraulic equations that describe the
coolant (moderator) mass density distribution.

The fuel burnup equation (Bell and Glasstone, 1970),

dNFðr; tÞ
dt

¼Mð/; TÞNFðr; tÞ; ð1Þ

is an ordinary differential equation where

Mð/Þ ¼
Z 1

0
/ðr; E; tÞXðTÞdEþD;

where X is a cross-section and fission yield matrix, D is a decay ma-
trix, and T(r,t) is the temperature at r in time t. Eq. (1) has a formal
solution (Bell and Glasstone, 1970)

NFðr; tÞ ¼ NF;0ðrÞ exp½Mð/; TÞðt � t0Þ�; ð2Þ

where NF, 0(r) is the fuel nuclide field at time t0. We wish to stress
that Mð/Þ is determined by the neutron energy spectrum; thus, all
references to Eq. (2) in this paper assume the reaction rates were
determined by /.

The neutron flux /(r,E,t) is approximated at time t by the funda-
mental-mode eigenfunction of the criticality equation

BðNÞ/ðsÞ � LðNÞ � 1
k

FðNÞ
� �

/ðsÞ ¼ 0; ð3Þ

where N describes the nuclide field in the whole reactor

NðrÞ ¼
NFðrÞ for r in fuel
NCðrÞ for r in coolant

�
; ð4Þ

L(N)/(s) represents the migration and loss of neutrons from s, and
F(N)/(s) accounts for neutron production in s due to fission.

The coolant (moderator) nuclide field NC(r) is given by ther-
mal–hydraulic equations that ensure that the coolant mass, en-
ergy and momentum are conserved in the whole reactor at any
time. The thermal–hydraulic equations are to be completed with
boundary conditions for the coolant mass flow rate, inlet coolant
temperature and inlet pressure. In the following text, the nuclide
field vector NC(r) (determining the coolant density) is given by
the function C(/(s)) as the solution to the thermal–hydraulic
equations:

NCðr; tÞ ¼ Cð/ðsÞÞ: ð5Þ

Since the core conditions are required to be steady-state at all
time steps of the fuel cycle calculations, it is necessary to pre-
vent even the natural xenon oscillations that could develop in
the calculations with short time steps of few hours. This can
be achieved by forcing the concentration of 135Xe to its saturated
level; i.e., a level that is naturally established for t ?1 (with the
neutron flux and fission rate fixed). The saturated concentration
of 135Xe is reached practically after several days; thus, this addi-
tional constrain to the above system of equations is not neces-
sary when the time steps are larger than several days. The
saturated xenon concentration can be derived directly from the
burnup equation.

In the following text, the fundamental-mode flux /(s) that sat-
isfies Eq. (3) with the operator B is denoted as /B. In Section 3.2,
/BðNF ;NCÞ specifically denotes the fundamental-mode neutron flux
computed by a Monte Carlo criticality code in a reactor with the
nuclide fields NF and NC, and /B(N) denotes the fundamental-mode
neutron flux computed by a Monte Carlo criticality code in a reac-
tor with the combined nuclide field N.

3. The SIE method for MC burnup calculations with TH feedback

3.1. Derivation of the method

The Stochastic Implicit Euler method was derived for Monte
Carlo burnup calculations of nuclear fuel cycles by Dufek et al.,
2013a. Here, we extend the method derivation so that the ther-
mal–hydraulic feedback is reflected.

The implicit Euler method is the simplest method that satisfies
the unconditional stability property (Hoffman, 2001). In the con-
text of burnup calculations with thermal–hydraulic feedback, the
implicit Euler method uses the end-of-step neutron flux to deplete
the fuel over the whole time step and to calculate the thermal–
hydraulic conditions.

In the following text, we derive an efficient way of calculating
the end-of-step neutron flux. Let NF,i, NC,i and /i denote the nu-
clide field in fuel and coolant (moderator) and neutron flux at
the end of ith time step, respectively. When NF,i�1 is depleted
with the end-of-step flux /i over the ith time step then NF,i

equals

NF;i ¼ NF;i�1 exp½Mð/i; TÞðti � ti�1Þ�: ð6Þ

Similarly, the coolant (moderator) nuclide field is given at the end of
the ith time step as

NC;iðr; tÞ ¼ Cð/iÞ; ð7Þ

while /i is given by

/i ¼ /BðNF;i ;NC;iÞ: ð8Þ

Substituting NF,i from Eq. (6) and NC, i from Eq. (7) into Eq. (8)
forms a non-linear equation for /i,

/i ¼ /B NF;i�1 exp½Mð/i ;TÞðti�ti�1Þ�;Cð/iÞð Þ: ð9Þ

For sake of simplicity, let G denote the right-hand side of Eq. (9)
as a function of /i. Then Eq. (9) reduces into a simple form

/i ¼ Gð/iÞ: ð10Þ

In case of Monte Carlo calculation, G is approximated by a sto-
chastic function G that contains an additional noise term e,bG ¼ Gþ e:

This changes Eq. (10) into

/i ¼ bGð/iÞ; ð11Þ

J. Dufek, H. Anglart / Annals of Nuclear Energy 62 (2013) 260–263 261



Download English Version:

https://daneshyari.com/en/article/8069908

Download Persian Version:

https://daneshyari.com/article/8069908

Daneshyari.com

https://daneshyari.com/en/article/8069908
https://daneshyari.com/article/8069908
https://daneshyari.com

