
Regression analysis of the structure function for reliability evaluation of
continuous-state system

M.L. Gámiz �, M.D. Martı́nez Miranda

Departamento de Estadı́stica e I.O., Facultad de Ciencias, Universidad de Granada, Granada 18071, Spain

a r t i c l e i n f o

Article history:

Received 11 June 2008

Received in revised form

10 March 2009

Accepted 20 September 2009
Available online 30 September 2009

Keywords:

Continuum structures

Cross-Validation

Isotonic regression

Nonparametric multivariate regression

Reliability assessment

a b s t r a c t

Technical systems are designed to perform an intended task with an admissible range of efficiency.

According to this idea, it is permissible that the system runs among different levels of performance, in

addition to complete failure and the perfect functioning one. As a consequence, reliability theory has

evolved from binary-state systems to the most general case of continuous-state system, in which the

state of the system changes over time through some interval on the real number line. In this context,

obtaining an expression for the structure function becomes difficult, compared to the discrete case, with

difficulty increasing as the number of components of the system increases. In this work, we propose a

method to build a structure function for a continuum system by using multivariate nonparametric

regression techniques, in which certain analytical restrictions on the variable of interest must be taken

into account. Once the structure function is obtained, some reliability indices of the system are

estimated. We illustrate our method via several numerical examples.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Most research in reliability models have traditionally concen-
trated in a binary formulation of systems behaviour, that is,
models allow only two states of functioning for a system and its
components: perfect functioning and complete failure. However,
in practice, many systems may experience continuous degradation
so that they can exhibit different levels of performance between
the two extreme cases of full functioning and fatal failure. A
typical example is a system subject to wear, which degrades
continuously with time, so its performance properties decrease
progressively and, as consequence, it is necessary to consider a
wider specification of the state space in order to have a more
precise and appropriate description of the behaviour of the system
at each time.

Baxter [1,2] first introduced continuum models for reliability
systems, and, since then, a wide variety of performance measures
have been defined and calculated to be valid for binary, multi-
state and continuum systems (see [3] for an extensive review and
more recently [4]). As a particular case, the structure function of
the system, which represents the link function between system
state and its components, has been a subject of primary interest in
the field of reliability engineering. Since the reliability evaluation
can be a very difficult problem in practice, even for relatively
simple systems (see [5,6], for instance), it seems reasonable that

to have a procedure for modelling the relationship between the
system state and its components may assists efficiently in the
reliability assessment of complex systems.

For binary systems, the structure function can be determined if
the minimal paths or minimal cuts are known [7]. If it is the case
of more than two states, several procedures have been developed
in order to generalize the concept of binary coherent structure to a
multi-state configuration, and so, the structure function can be
specified via a finite set of boundary points, see El-Neweihi et al.
[8] for a complete treatment of the problem. Later, Aven [9]
justifies the introduction of multi-state models by the needs in
some areas of application, such as gas/oil production and
transportation systems, where a binary approach would give a
poor representation of the real situation. He investigates the
problem of computing relevance performance measures for a
multi-state monotone system, some comparisons of the accuracy
of such computations and the ones obtained by Monte Carlo
methods are presented.

In [5] Boolean model is derived in order to describe the state of
a multi-state system, revealing that the reliability evaluation of a
system is a difficult task from a practical viewpoint, even for
systems not excessively complexes. Meng [10] carries out a
comparative study of two upper bounds for the reliability of a
multi-state system, generalizing the binary case.

In case of a continuous system, if the structure function cannot
be determined basing on qualitative characteristics (for instance,
series or parallel structures) or boundary-point analysis, approx-
imation methods are required. To that effect, several treatments of
the problem have been carried out. Lisnianski [6] investigates an
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approach based on the universal generating function technique.
The method consists of a discrete approximation of the contin-
uous-state system performance by using a finite multi-state
system and the purpose is to construct upper and lower bounds
for the reliability measures of the continuous system.

Given the high difficulty inherent in the analytical evaluation
of the performance of a continuous system, a new approach based
on empirical methods has been introduced recently. Brunelle and
Kapur [11] proposed a multivariate interpolation procedure by
which a structure function for a continuous system is built
starting from a scatterplot that represents the value of the state of
the system at some values of the components values. Under this
empirical perspective, we now propose a new technique that
assumes a regression model for the structure function of a
continuous system. The main purpose of this paper is to construct
a structure function for the system given an observed set of states
of the system and its components. For such a purpose, we propose
the use of a class of monotone nonparametric regression
techniques appropriate for the kind of problem we study here.

When the structure function F is monotone in one or more
explanatory variables, it is appropriate to use any monotonic
regression technique. Several numerical procedures are available
from the specialized literature. Pool Adjacent Violators Algorithm
(PAVA) is the method of most widespread use. It was first proposed
to solve the one-dimensional case, when only one explanatory
variable is considered, and it has been subsequently generalized to
higher dimension problems (see [12]). Other solutions have been
proposed to the problem of monotonic regression in one or more
dimensions, [13,14] for instance, however we consider in this
paper PAVA given that it can be easily implemented and extended
to the case of multivariate regression. Moreover it can be applied
after a nonparametric estimation method has been applied to a
data set. In fact, our problem can be summarized as follows: find a

nonparametric monotone surface that fits properly a given data set.
In this aim, we explore a solution that combines local smoothing
and isotonic regression.

The paper is organized as follows. Section 2 gives an overview
of the problem of modelling the behaviour of continuum
reliability structures that is our interest. Section 3, which is the
main section of the paper, is devoted to explain the nonparametric
regression techniques that we have adapted to the particular
context of the structure function of a reliability system. The
method demands to do two choices, i.e. the kernel function and
the bandwidth parameter. So, in Section 3.3, we consider the
problem of the boundary bias correction that is implicit in
the case of compact support variables. In Section 3.4, we discuss
the problem of selecting the bandwidth parameter by two
different methods: the widely known and used Cross-Validation
method and also a Bootstrap method. And finally, in Section 3.5,
we expose the isotonic procedure that ensures the monotonicity
required on the structure function of a coherent system and that is
not guarantied, in principle, by the smooth estimation of the
previous subsections. In Section 4, we carry out some simulation
studies to illustrate the method. To finish, Section 5 gives some
results in order to estimate some important measures of the
system performance. Conclusions and further research are pre-
sented in Section 6. References section comprises some selected
references on the subject.

2. Continuous structure function

Let Y be the random variable that denotes the state of a system
composed by m elements, which are assumed mutually indepen-
dent. The state of component i is a random variable Xi, for any i=1,
2,y, m. We allow variables X1, X2,y, Xm, and Y to take any value

into the interval [0, 1]. There is no loss of generality if we assume 0
as the worst state for the system as well as for any component
(complete failure), and 1 is considered as the best state (perfect

functioning).
For preliminary concepts, we establish the following notation.

2.1. Notation and definitions

m the system size; i.e. the number of components
xi the state of component labelled i, 0rxir1
x (x1, x2,y, xm), a state-vector
0 (0, 0,y, 0), complete failure state
1 (1, 1,y,1), perfect functioning state
(x|ni) (x1, x2,y, xi�1, n, xi +1,y, xm)
Xi the random variable for xi

X (X1, X2,y, Xm)
S [0, 1]m

! the usual partial ordering defined in S, i.e.
x1!x23x1irx2i for all i=1, 2,y, m

y the state of the system
Y the random variable for y

F(x) the structure function. Then F: [0, 1]m-[0, 1]; and
y=F(x)

n the sample size
i.i.d. independent identically distributed
fðXj;YjÞAS� ½0;1�; j¼ 1;2; . . . ;ng a sample of i.i.d. (m+1)-dimen-

sional observations
s(x) a smooth estimate (not necessarily monotone) of F(x)
f(x) a monotone smooth estimate of F(x)
K a kernel function in the context of nonparametric

estimation
h a bandwidth parameter
e random perturbation
oi a weighting function
G the Gamma function
At transpose of matrix A
r the gradient operator
* indicates a bootstrap characteristic
et (1, 0,y, 0)
~K ð�; a; bÞ density function of a Beta distribution with shape

parameters a and b

m mean value of the Beta distribution
s2 variance of the Beta distribution
B the bias of an estimator
V the variance of an estimator
d a critical state of the system
# number symbol
PF the probability of failure of the system
G a grid of points in the unit interval
ASE Averaged Squared Error
CV Cross-Validation
FORM (SORM) First (Second) Order Reliability Method
ISE Integrated Squared Error
MLLS Multivariate Local Linear Smoother
MNWS Multivariate Nadaraya–Watson Smoother
MSE Mean Squared Error
PAVA Pool Adjacent Violators Algorithm
POF probability of failure

2.2. Coherent systems

The structure function captures the relationships between the
components of a system and the system itself, in such a way that
the state of the system is known from the states of its components
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