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a b s t r a c t

Global sensitivity analysis of complex numerical models can be performed by calculating variance-

based importance measures of the input variables, such as the Sobol indices. However, these techniques,

requiring a large number of model evaluations, are often unacceptable for time expensive computer

codes. A well-known and widely used decision consists in replacing the computer code by a metamodel,

predicting the model responses with a negligible computation time and rending straightforward the

estimation of Sobol indices. In this paper, we discuss about the Gaussian process model which gives

analytical expressions of Sobol indices. Two approaches are studied to compute the Sobol indices: the

first based on the predictor of the Gaussian process model and the second based on the global stochastic

process model. Comparisons between the two estimates, made on analytical examples, show the

superiority of the second approach in terms of convergence and robustness. Moreover, the second

approach allows to integrate the modeling error of the Gaussian process model by directly giving some

confidence intervals on the Sobol indices. These techniques are finally applied to a real case of

hydrogeological modeling.

& 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Environmental risk assessment is often based on complex
computer codes, simulating for instance an atmospheric or
hydrogeological pollution transport. These computer models
calculate several output values (scalars or functions) which can
depend on a high number of input parameters and physical
variables. To provide guidance to a better understanding of this
kind of modeling and in order to reduce the response uncertain-
ties most effectively, sensitivity measures of the input importance
on the response variability can be useful [1–6]. However, the
estimation of these measures (based on Monte-Carlo methods for
example) requires a large number of model evaluations, which is
untractable for time expensive computer codes. Solutions exist to
reduce this computational cost like random balance designs [7]
but, in our industrial problems, the choice of the sampling design
is not always available. Moreover, we want to use a generic tool to
make both sensitivity analysis and uncertainty propagation and,
more generally, any prediction of computer code. This kind of
problem is of course not limited to environmental modeling and
can be applied to any simulation system.

To overcome the problem of huge calculation time in
sensitivity analysis, approaches based on nonparametric estima-
tion tools have been proposed by Doksum and Samarov [8] and
more recently by Da Veiga and Gamboa [9]. These nonparametric
methods allow to significantly reduce the number of function
evaluations needed to accurately estimate sensitivity indices.
Another solution that we want to focus on in this paper can be to
replace the complex computer code by a mathematical approx-
imation, called a response surface or a surrogate model or also a
metamodel. The response surface method [10] consists in
constructing a function from few experiments that simulate the
behavior of the real phenomenon in the domain of influential
parameters. These methods have been generalized to develop
surrogates for costly computer codes [11,12]. Several metamodels
are classically used: polynomials, splines, generalized linear
models, or learning statistical models like neural networks,
regression trees, support vector machines [13,14]. Besides, Ratto
et al. [15] recently proposed to use a State Dependent Parameter
metamodeling to build an approximation of the computer code
and perform the sensitivity analysis studies.

Among all the solutions based on metamodels, our attention is
focused on the Gaussian process model which can be viewed as an
extension of the kriging principles [11,16,17]. This metamodel
which is characterized by its mean and covariance functions,
presents several advantages: it is an exact interpolator and it is
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interpretable (not a black-box function). Moreover, numerous
authors (for example, [6,18–20]) have shown how this model can
provide a statistical basis for computing an efficient predictor of
code response. In addition to its efficiency, this model gives an
analytical formula which is very useful for sensitivity analysis,
especially for the variance-based importance measures, the so-
called Sobol indices [1,2]. To derive analytical expression of Sobol
indices, Chen et al. [21] used tensor-product formulation and
Oakley and O’Hagan [22] considered the Bayesian formalism of
Gaussian processes.

We propose to compare these two analytical formulations of
Sobol indices for the Gaussian process model: the first is obtained
considering only the predictor, i.e. the mean of the Gaussian
process model [21], while the second is obtained using all the
global stochastic model [22]. In the last case, the estimate of a
Sobol index is itself a random variable. Its standard deviation is
available and we propose an original algorithm to estimate its
distribution. Consequently, our method leads to build confidence
intervals for the Sobol indices. To our knowledge, this information
has not been proposed before and can be obtained thanks to the
analytical formulation of the Gaussian process model error. This is
particularly interesting in practice when the predictive quality of
the metamodel is not high (because of small learning sample size
for example), and our confidence on Sobol index estimates via the
metamodel is poor.

The next section briefly explains the Gaussian process model-
ing and the Sobol indices defined in the two approaches
(predictor-only and global model). In Section 3, the numerical
computation of a Sobol index is presented. In the case of the
global stochastic model, a procedure is developed to simulate its
distribution. Section 4 is devoted to applications on analytical
functions. First, comparisons are made between the Sobol indices
based on the predictor and those based on the global model. The
pertinence of simulating all the distribution of Sobol indices is
therefore evaluated. Finally, Sobol indices and their uncertainty
are computed for a real data set coming from a hydrogeological
transport model based on waterflow and diffusion dispersion
equations. The last section provides some possible extensions and
concluding remarks.

2. Sobol indices with Gaussian process model

2.1. Gaussian process model

Let us consider n realizations of a computer code. Each
realization yðxÞ of the computer code output corresponds to a d-
dimensional input vector x ¼ ðx1; . . . ; xdÞ. The n input points
corresponding to the code runs are called an experimental design
and are denoted as Xs ¼ ðx

ð1Þ; . . . ; xðnÞÞ. The outputs will be denoted
as Ys ¼ ðyð1Þ; . . . ; yðnÞÞ with yðiÞ ¼ yðxðiÞÞ; i ¼ 1; . . . ;n. Gaussian pro-
cess (Gp) modeling treats the deterministic response yðxÞ as a
realization of a random function YðxÞ, including a regression part
and a centered stochastic process. The sample space O denotes the
space of all possible outcomes o, which is usually the Lebesgue-
measurable set of real numbers. The Gp is defined on Rd

�O and
can be written as

Yðx;oÞ ¼ f ðxÞ þ Zðx;oÞ. (1)

In the following, we use indifferently the terms Gp model and Gp
metamodel.

The deterministic function f ðxÞ provides the mean approxi-
mation of the computer code. Our study is limited to the
parametric case where the function f is a linear combination of
elementary functions. Under this assumption, f ðxÞ can be written

as follows:

f ðxÞ ¼
Xk

j¼0

bjf jðxÞ ¼ FðxÞb,

where b ¼ ½b0; . . . ;bk�
t is the regression parameter vector, f j ðj ¼

1; . . . ; kÞ are basis functions and FðxÞ ¼ ½f 0ðxÞ; . . . ; f kðxÞ� is the
corresponding regression vector. In the case of the one-degree
polynomial regression, ðdþ 1Þ basis functions are used:

f 0ðxÞ ¼ 1;

f iðxÞ ¼ xi for i ¼ 1; . . . ; d:

(

In our applications, we use this one-degree polynomial as the
regression part in order to simplify all the analytical numerical
computation of sensitivity indices. This can be extended to other
bases of regression functions. Without prior information on the
relationship between the output and the input, a basis of one-
dimensional functions is recommended to simplify the computa-
tions in sensitivity analysis and to keep one of the most
advantages of Gp model [23].

The stochastic part Zðx;oÞ is a Gaussian centered process fully
characterized by its covariance function: CovOðZðx;oÞ; Zðu;oÞÞ ¼
s2Rðx; uÞ; where s2 denotes the variance of Z and R is the
correlation function that provides interpolation and spatial
correlation properties. To simplify, a stationary process ðZðx;oÞÞ
is considered, which means that the correlation between Zðx;oÞ
and Zðu;oÞ is a function of the difference between x and u.
Moreover, our study is restricted to a family of correlation
functions that can be written as a product of one-dimensional
correlation functions:

CovOðZðx;oÞ; Zðu;oÞÞ ¼ s2Rðx� uÞ ¼ s2
Yd

l¼1

Rlðxl � ulÞ. (2)

This form of correlation function is particularly well adapted to
get some simplifications of the integrals in the future analytical
developments: in the case of independent inputs, it implies the
computation of only one or two-dimensional integrals to compute
the Sobol indices. Indeed, as described in Section 3.2, the
application and the computation of the Sobol index formulae
are simplified when the correlation function has the form of a
one-dimensional product [6].

Among other authors, Chilès and Delfiner [24] and Rasmussen
and Williams [20] give a list of correlation functions with their
advantages and drawbacks. Among all these functions, our attention
is devoted to the generalized exponential correlation function:

Rh;pðx� uÞ ¼
Yd

l¼1

expð�yljxl � ulj
pl Þ with ylX0 and 0oplp2,

where h ¼ ½y1; . . . ; yd�
t and p ¼ ½p1; . . . ; pd�

t are the correlation
parameters. This choice is motivated by the derivation and
regularity properties of this function. Moreover, within the range
of covariance parameters values, a wide spectrum of shapes is
possible: for example, p ¼ 1 gives the exponential correlation
function while p ¼ 2 gives the Gaussian correlation function.

2.2. Joint and conditional distributions

Under the hypothesis of a Gp model, the learning sample Ys

follows a multivariate normal distribution pOðYsjXsÞ:

pOðYs;ojXsÞ ¼NðFsb;RsÞ,

where Fs ¼ ½Fðxð1ÞÞ
t; . . . ; FðxðnÞtÞ� is the regression matrix and

Rs ¼ s2Rh;pðx
ðiÞ � xðjÞÞi;j¼1...n

is the covariance matrix.
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