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a b s t r a c t

In this paper, a novel multi-step method is proposed for solving the inverse point kinetics problem using
Lagrange polynomial method. By use of this approach, the need for nuclear power history or the Laplace
transform is vanished. Furthermore, the accuracy of the method is of order hn for the (n + 1)-point for-
mula, where h is the computational time-step.

The three- and five-point formulas of the Lagrange method are used for on-line reactivity calculations
and results are benchmarked against reference solutions for different nuclear power forms. Moreover,
results for different computational time-steps are compared in each case.

The results show the accuracy of the proposed method in all benchmarking cases. For slow transients
(large reactor periods), it is shown that time-steps of up to 1 s lead to highly reliable reactivity calcula-
tions. However, the optimal time-step in almost all cases is shown to be 0.1 s. The main advantage of the
proposed approach, in contrast with previous numerical methods, is its stability and convergence in large
time-step calculations.

The proposed method can be used as real time reactivity meter in all nuclear reactors without limita-
tion of nuclear power form.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The inverse solution of the point kinetic equations, in order to
obtain the reactivity q(t) where the variations of the reactor power
P(t) are known arbitrary functions of time, is of great importance
for several reasons: (a) In reactor operation, the time dependence
of the applied reactivity required to yield a specific power variation
must be known in order to program the control rod motion (Mur-
ray et al., 1964). (b) During the start-up of a nuclear reactor, the de-
sign of a continuous reactivity monitor is needed from the
viewpoint of reactor safety (Suzuki and Tsunoda, 1964). Further-
more, there are some other applications for the inverse kinetics
problem (Akcasu et al., 1971; Hetrick, 1971).

In the literature, there have been some researches on calcula-
tion of the reactivity in a nuclear reactor based on the numerical
solution of the integral term associated with the inverse point
kinetics equation, known as the nuclear power history (Shimazu
et al., 1987; Hoogenboom and Van Der Sluijs, 1988; Binney and Ba-
kir, 1989; Ansari, 1991; Tamura, 2003). However, in order to design
an on-line reactivity meter for a nuclear reactor, the need for the
power history must be vanished. For this aim, a method was intro-
duced to calculate the reactivity without using the nuclear power
history (Suescún et al., 2007), implementing nuclear power deriv-
atives and the least squares method to control the noise. Reactivity

can also be calculated through finite differences (Suescún and Sen-
ra, 2010). Recently, a new formulation has also been presented to
calculate the reactivity in nuclear reactors for different forms of
nuclear power using the Hamming method (Suescún et al., 2012).

In this work, Lagrange difference formulas are proposed and
tested for the on-line reactivity calculation without the need for
nuclear power history or the Laplace transform. The truncation er-
ror accompanied by each formula is analyzed and results for differ-
ent forms of the nuclear power are benchmarked against reference
solutions. Furthermore, results are compared with some other
existing methods in the literature.

In the following and in Section 2, the inverse point kinetics
problem is explained in detail. Section 3 describes the Lagrange
method and its implementation for on-line reactivity calculations.
The results of the proposed method for different nuclear power
forms are shown then in Section 4. Finally, Section 5 concludes
the paper.

2. Inverse point kinetics problem

The point kinetic equations can be obtained from the time-
dependent neutron diffusion equation, assuming constant shape
of the neutron flux (Duderstadt and Hamilton, 1976). Supposing
six delayed-neutron groups, the system of equations comprises se-
ven non-linear coupled differential equations, which describe the
time evolution of the neutron density (or the nuclear power) and
concentration of delayed-neutron precursors as follows:
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dPðtÞ
dt
¼ qðtÞ � b

K

� �
PðtÞ þ

X6

i¼1

kiCiðtÞ ð1Þ

dCiðtÞ
dt

¼ bi

K
PðtÞ � kiCiðtÞ; i ¼ 1;2; . . . ;6 ð2Þ

With the following initial conditions:

Pð0Þ ¼ P0 ð3Þ

Cið0Þ ¼
bi

Kki
P0; ð4Þ

where P(t) is the neutron number density (proportional to nuclear
power), Ci(t) the concentration of the ith group of delayed-neutron
precursors, q(t) the reactivity K the neutron generation time, bi the
effective fraction of the ith group of delayed neutrons, b the total
effective fraction of delayed neutrons (b =

P
ibi), ki is the decay con-

stant of the ith group of delayed-neutron precursors.
Many formulas have been derived for calculating the reactivity

q(t) from a prescribed power history P(t) (Duderstadt and Hamil-
ton, 1976; Hetrick, 1971). From Eqs. (1) and (2) one has

qðtÞ ¼ bþ K
PðtÞ

dPðtÞ
dt
� K

PðtÞ
X6

i¼1

kiCiðtÞ ð5Þ

dCiðtÞ
dt
þ kiCiðtÞ ¼

bi

K
PðtÞ; i ¼ 1;2; . . . ;6 ð6Þ

Integrating Eq. (6), the precursor densities can be stated as fol-
lows (Hetrick, 1971):

CiðtÞ ¼ Cið0Þe�ki t þ bi

K

Z t

0
e�kiðt�t0ÞPðt0Þdt0 ð7Þ

This equation is obtained supposing that Pðt 6 0Þ ¼ P0 and
Ciðt 6 0Þ ¼ Cið0Þ, which means the reactor is in critical state.
Substituting Eq. (7) into Eq. (5), after some manipulations, gives

qðtÞ ¼ bþ K
PðtÞ

dPðtÞ
dt
� 1

PðtÞ
X6

i¼1

kibie
�ki t

P0

ki
þ
Z t

0
eki t

0
Pðt0Þdt0

� �
ð8Þ

This equation cannot be applied as on-line reactivity meter be-
cause of its dependence on the nuclear power history (the integral
in the RHS of this equation). However, it can be solved analytically
for some nuclear power forms. Hence, it will be considered in the
following as the reference solution for benchmarking numerical
methods. For instance, if the power is assumed to be as
P(t) = exp (xt), the analytical solution of Eq. (8) will be as follows:

qðtÞ ¼ bþKx�
X6

i¼1

kibi

ðki þxÞ �
X6

i¼1

bix
ðki þxÞ e

�ðkiþxÞt; ð9Þ

which results in the Inhour equation as t ?1. The Inhour equation
(Hetrick, 1971), nevertheless, is obtained assuming a constant reac-
tivity q(t) = q0. Furthermore, analytical solutions of the integral in
the RHS of Eq. (8) for some other power variations are given in
Table 1.

3. Lagrange method

3.1. Lagrange difference formulas

To obtain general derivative approximation formulas, suppose
that {t0, t1, . . ., tn} are (n + 1) distinct numbers in some interval I
and that feCn+1(I). The Lagrange polynomial expansion of f(t) can
be expressed as follows (Burden and Faires, 2010):

f ðtÞ ¼
Xn

k¼0

f ðtkÞLkðtÞ þ
ðt � t0Þ:::ðt � tnÞ
ðnþ 1Þ! f ðnþ1ÞðnðtÞÞ ð10Þ

for some n(t) in I, where Lk(t) denotes the kth Lagrange coefficient
polynomial for f(t) at t0, t1, . . ., tn.

Differentiating this expression gives:

f 0ðtÞ ¼
Xn

k¼0

f ðtkÞL0kðtÞ þ Dt
ðt � t0Þ:::ðt � tnÞ
ðnþ 1Þ!

� �
f ðnþ1ÞðnðtÞÞ

þ ðt � t0Þ . . . ðt � tnÞ
ðnþ 1Þ! Dt f ðnþ1ÞðnðtÞÞ

� �
ð11Þ

One confronts a problem estimating the truncation error in Eq.
(11) unless t is one of the numbers tj. In this case, the term multi-
plying Dt[f(n+1)(n(t))] is zero, and the formula becomes:

f 0ðtjÞ ¼
Xn

k¼0

f ðtkÞL0kðtjÞ þ
f ðnþ1ÞðnðtjÞÞ
ðnþ 1Þ!

Yn

k ¼ 0
k–j

ðtj � tkÞ; ð12Þ

which is called a (n + 1) -point formula to approximate f0(tj).
Generally, using more evaluation points in Eq. (12) results in

more accuracy. However, growth of round-off error due to the
number of functional evaluations should be also considered. Be-
sides, the method would produce more delay if more evaluation
points are considered and real time calculations would be infeasi-
ble if calculation time is increased. Thus, the most common formu-
las are three- and five-point ones (Burden and Faires, 2010).

Three-point endpoint formula is given as:

f 0ðtjÞ ¼
1

2h
½3f ðtjÞ � 4f ðtj � hÞ þ f ðtj � 2hÞ� þ h2

3
f ð3ÞðnÞ; ð13Þ

where n lies between tj and tj – 2h. In addition, five-point endpoint
formula is obtained as follows:

f 0ðtjÞ ¼
1

12h
½25f ðtjÞ � 48f ðtj � hÞ þ 36f ðtj � 2hÞ � 16f ðtj

� 3hÞ þ 3f ðtj � 4hÞ� þ h4

5
f ð5ÞðnÞ; ð14Þ

in which n lies between tj and tj � 4h. Furthermore, h denotes the
computational time-step in both the formulas.

According to Eqs. (13) and (14), the truncation errors accompa-
nied by the three- and five-point formulas are of order h2 and h4,
respectively.

3.2. Reactivity calculation using Lagrange method

Introducing the three-point formula (Eq. (13)) into Eqs. (5)
and (6) gives the following equations for the reactivity
calculation:

qnþ1 ¼ bþ K

Pnþ1

1
2h
ð3Pnþ1 � 4Pn þ Pn�1Þ � K

Pnþ1

X
i

kiC
nþ1
i ð15Þ

Cnþ1
i ¼ 3

2h
þ ki

� ��1 bi

K
Pnþ1 þ 1

2h
ð4Cn

i � Cn�1
i Þ

� �
ð16Þ

Table 1
Analytical solution of the integral term in the inverse kinetics equation for some
power changes.

n(t0) R t
0 eki t0nðt0Þdt0

ext0 eðkiþxÞt�1
kiþx

1 + xt0 1
k2

i
½ðki �xÞðeki t � 1Þ þxkiteki t �

1 + A sin xt0 1
ki
ðeki t � 1Þ þ A

k2
i þx2 ½eki tðki sinxt �x cos xtÞ þx�
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