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a b s t r a c t

Cross-section recondensation using the Discrete Generalized Multigroup method (DGM) has shown
promise in improving coarse group solutions by capturing neighboring spectral effects. However, full
consistency with the fine group is only assured when using a spatially flat angular flux approximation,
such as used in step difference discrete ordinates. Moving to high order spatial methods, such as charac-
teristic type methods, reveals spatial inconsistencies that exist between the DGM equations and the ori-
ginal fine group equations. We propose two methods to address the spatial inconsistencies between DGM
and the fine group equations. The first method introduces local spatial dependence of the angular and
scalar fluxes, determined using higher order spatial methods, into the cross section moments and del
terms defined in DGM. This provides much better agreement between the DGM solution and the fine
group solution for any high order spatial method. Unfortunately, this process introduces significant
increases to the required memory storage. This issue can be mitigated to some extent through replace-
ment of storage with on-the-fly calculations and a procedure to do so is outlined as well. The second
method defines an exact del term by applying the spatial method to the fine group equations before
deriving the DGM equations. This new definition allows for convergence to the exact fine group solution.
While these equations need to be built specifically for a given spatial method and still suffer from large
storage requirements, higher order spatial methods are no longer required and introducing physics
informed approximations should significantly reduce the memory burden.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The multigroup approximation of the neutron transport equa-
tions is the discretization of choice in nuclear reactor analysis.
For whole core analysis, the multigroup approximation is incorpo-
rated into a multistep process, in which the energy resolution is
gradually lowered to allow for more spatial and angular unknowns
to be introduced into the core model. The approximations used in
this process prevent fine group information from being passed be-
tween neighboring materials with significantly different proper-
ties. Historically, this approximation has not presented LWR
analysis with problems since the material properties, for the most
part, do not change significantly between assemblies and the neu-
tron mean free paths are much smaller than the size of the assem-
blies. Many advanced reactor cores, though, may contain
assemblies that are much different from one another, such as
MOX loaded cores, and may have long neutron mean free paths,
like High Temperature Gas Reactors. In these cases, the multigroup
approximation may lead to significant errors in important

reactions rates. Therefore, a new approach was developed to regain
fine group accuracy at the core level without the computational
cost of a full fine group solve.

The Discrete Generalized Multigroup (DGM) provides a way to
reconstruct fine group fluxes using only the solution to the coarse
group equations and high order in energy fixed source equations.
Still, this too is limited by the approximations used in multistep
process, since we assume the fine group spectrum at the assembly
level is comparable to what it will be when placed in a reactor. To
correct these errors, the reconstructed fine group fluxes can be
used to update coarse group constants and take into account the
spectral changes between different assembly types. This process
is called recondensation. By successively solving the coarse group
equations using updated coarse group constants, the coarse group
solution can be improved and approach the fine group solution.
This provides a way to achieve near fine group accuracy at a cost
comparable to a coarse group calculation (Zhu and Forget, 2010,
2011).

While DGM works perfectly for flat flux methods, such as step
difference discrete ordinates, The DGM equations are not fully con-
sistent with the fine group equations when applied to higher order
spatial methods. This limitation to flat flux methods requires a high
spatial resolution to provide an accurate solution. Enabling
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consistency with higher order spatial methods would reduce the
total number of spatial unknowns solved and allow recondensation
to be applied to a wider range of methods for whole core analysis.

This paper proposes two different approaches to addressing this
issue. The first builds upon the current form of the DGM equations
and its respective cross section moment definitions. Section 2 pro-
vides the foundation of DGM and the recondensation procedure
necessary to begin building a consistent approach. Section 3 intro-
duces the source of spatial inconsistencies in DGM. Section 4 pre-
sents the first proposed approach to deal with high order spatial
methods, while Section 5 uses this approach to improve the coarse
group solution. Section 6 defines a new set of DGM equations de-
rived specifically for MOC that allows recondensation to converge
to the exact fine group solution without the need of additional
higher spatial order equations.

2. Recondensation using the Discrete Generalized Multigroup
method

2.1. The Discrete Generalized Multigroup (DGM) method

Using the multigroup approximation in the group collapse pro-
cess, it is assumed that the fine group spectrum within each coarse
group is flat. In doing so, all information about the fine group spec-
trum is lost. With DGM, it is assumed that the spectrum within
each coarse group is expanded using a set of orthogonal functions.
While continuous functions in energy can be used to represent the
fine group spectrum (Rahnema et al., 2008), discrete basis func-
tions are a more natural fit for the discrete nature of the multi-
group equations. This representation of the within-group fluxes
provides the basis for the formation of the DGM moment equa-
tions. Through the substitution of this expansion into the fine
group equation and the subsequent integration with respect to
the ith discrete orthogonal function, the isotropic DGM moment
equations are produced (Zhu and Forget, 2010).

X
*

� rwi;g r
*
;X
*

� �
þ RT;0;g r

*
;X
*

� �
wi;g r

*
;X
*

� �
þ di;g r

*
;X
*

� �
w0;g r

*
;X
*

� �

¼ 1
4p
XG

g0¼1

Rs;i;g0!gðr
*
Þ/0;g0 ðr

*
Þ þ

vi;gðr
*
Þ

4pk

XG

g0¼1

mRf ;g0ðr
*
Þ/0;g0 ðr

*
Þ

where

mRf ;gðr
*
Þ ¼

X
k2g

P0ðK;NÞ/gðr
*
;KÞmRf ;gðr

*
;KÞ
,X

k2g

P0ðK;NÞ/gðr
*
;KÞ

Rs;i;g0!gðr
*
Þ¼
X
L2g0

X
k2g

PiðK;NÞ/g0 ðr
*
;LÞRsðr

*
;L!KÞ

,X
L2g0

P0ðL;MÞ/g0 ðr
*
;LÞ

RT ;0;gðr
*
;X
*

Þ¼
X
k2g

P0ðK;NÞwgðr
*
;X
*

;KÞRT ;gðr
*
;KÞ
,X

k2g

P0ðK;NÞwgðr
*
;X
*

;KÞ

di;gðr
*
;X
*

Þ¼
X
k2g

PiðK;NÞwgðr
*
;X
*

;KÞðRT;gðr
*
;KÞ�RT;0;gðr

*
;X
*

ÞÞ
,X

k2g

P0ðK;NÞwgðr
*
;X
*

;KÞ

At this point, we still have the same number of equations as the
original fine group problem, but what has changed is how we use
these equations. With DGM, we find that we only have to conduct
our power iteration on our 0th order DGM equation, which is
equivalent to the coarse group problem since the del term vanishes
for i = 0. Therefore, instead of having to conduct a power iteration
over all the fine group equations, we only have to do so on the
coarse group equations.

L0;gw0;g ¼ Q 0;gðk;/0;gÞ

Since the other DGM equations only depend on the solution of
the 0th order DGM equation, once we have converged on our
coarse group solution, all that is left to do is solve a set of fixed
source problems to calculate the rest of our angular flux moments.

L0;gwi;g ¼ Q i;gðk;w0;g ;/0;gÞ

If we have the correct cross section moments for our problem,
then we can solve the DGM moment equations for our angular flux
moments and reconstruct the exact fine group solution.
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2.2. Recondensation

Unfortunately, the correct calculation of our cross section mo-
ments assumes a priori knowledge of the true fine group solution.
Since we gain nothing from applying the DGM equations if the fine
group eigenvalue problem has already been solved, another meth-
od is required. This led to the development of a process called
recondensation (see Fig 1).

To initialize the recondensation process, we assume an initial
guess on our fine group flux and calculate our cross section mo-
ments accordingly. With these values, we conduct our power iter-
ation on the coarse group equations, this solution is used to solve
the higher order DGM equations and a new set of fine group fluxes
is calculated. The new step that is introduced is that we use these
new flux values in the group collapse process to obtain a new set of
cross section moments. This is the essence of recondensation.

These updated material properties are used in the next DGM
calculation, the fine group fluxes reconstructed and the process is
repeated. After a number of recondensation steps have occurred,
the reconstructed fine group fluxes will converge towards the true
fine group solution (Zhu and Forget, 2011).

This method initially suffered from stability issues leading to
divergence in many cases. This has recently been resolved by appli-
cation of a Krasnoselskij Iteration on the updated angular flux mo-
ments instead of the typical Picard Iteration. This modifies the
recondensation process as follows:

wkþ1
i;g ¼ ð1� kÞwk

i;g þ kTwk
i;g

where T denotes the original recondensation process in operator
form, k is the current iteration and lambda may vary from 0 to 1.

Fig. 1. Flowchart for the recondensation procedure.
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