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a b s t r a c t

Attempts to resolve the point kinetics equations (PKEs) describing nuclear reactor transients have been
the subject of numerous articles and texts over the past 50 years. Some very innovative methods, such
as the RTS (Reactor Transient Simulation) and CAC (Continuous Analytical Continuation) methods of
G.R. Keepin and J. Vigil respectively, have been shown to be exceptionally useful. Recently however, sev-
eral authors have developed methods they consider accurate without a clear basis for their assertion. In
response, this presentation will establish a definitive set of benchmarks to enable those developing PKE
methods to truthfully assess the degree of accuracy of their methods. Then, with these benchmarks, two
recently published methods, found in this journal will be shown to be less accurate than claimed and a
legacy method from 1984 will be confirmed.

� 2012 Elsevier Ltd. All rights reserved.

1. My concern

The solution to the point kinetics equations, central to nuclear
reactor transient analysis, is a challenge that has yet to be satisfac-
tory resolved. There have been several notable historic attempts
including those of Nobrega (1971), Keepin (1965), Vigil (1967), Izu-
mi and Noda (1971) and others who, in effect, have provided only
modest improvements (if any) over these original methods. In sev-
eral recent publications however, we find authors presenting
numerical schemes with little or no change from those presented
earlier. In addition, they have made claims of accuracy that are
not based on true benchmarks, but on ad hoc comparisons to other
methods. We find numerical values, published to four, five or more
places of inferred accuracy, when indeed this is not the case.
These articles go under the titles of an efficient technique (Nahla,
2011; Aboanber and Hamada, 2002, 2003), analytical solution
(Nahla, 2010; Petersen et al., 2011), analytical exponential method
(Nahla, 2008) and analytical inversion method (Aboanber and Nahla,
2002). In reality, none of the methods listed are either analytical or
truly efficient or, more importantly, of benchmark accuracy
defined here to be a consistent 5–9 places.

As an example, we focus on an article entitled ‘‘An efficient
technique for the point kinetics equations with Newtonian temper-
ature feedback effects’’ (Nahla, 2011). In this work, we find an ad
hoc separation of the non-linear reactivity identical to that found
in (Kinard and Allen, 2004). There follows a finite difference devel-
opment that uses an implicit backward Euler (BE) finite difference

(FD) scheme to give an explicit extrapolated value of the unknown
(non-linear) reactivity at the next time interval. We then return to
the analytical form of the original equation with the (known) ad-
vanced reactivity inserted and to be solved analytically, over a time
step, as a set of 7 ODEs now with constant reactivity. In the process,
there is a rather unorthodox solution to the inhour equation that
seems overly complicated and entirely unnecessary, given that
one is simply solving for the zeros of a polynomial. The author then
compares his results with standard step input and ramp results
quoting 5 digits that are in excellent agreement with the literature.
Of particular note, the method is tested only for power transients
of less than 32 times nominal and not for severe transients. Finally,
there is no self-consistency check reported to ensure internal accu-
racy. Thus, the method has not been thoroughly verified leaving
open the question of its overall performance, especially for severe
transients. In the final section of the aforementioned article, there
are several tables of neutron densities for the case with tempera-
ture feedback. The entries are compared to several other methods,
where no two methods agree to more than two places while the
author quotes 7 digits (6 places). Clearly, any conclusion regarding
the merit of the ‘‘efficient technique’’ has no basis without further
evidence. In spite of this, the author concludes.

‘‘These comparisons substantiated the accuracy, faster [speed] and
the efficiency of the efficient techniques.’’

The investigation to follow demonstrates that benchmark accu-
racy of 9-places or more can come from the same basic BEFD
scheme found in (Nahla, 2011). Not only, will the simple BE
approximation be used in a most efficient way, but also there will
be no need to solve the inhour equation, greatly simplifying the
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overall numerical evaluation. In addition, definitive benchmarks
will be established for use as standards to enable truthful state-
ments concerning the accuracy of new methods. It must also be re-
marked, that, arguably, with establishment of the PKE/BEFD
algorithm to be presented, there may be no need for future numer-
ical algorithms to solve the PKEs.

2. The backward Euler finite difference (BEFD) approximation

We begin with the point kinetics equations with feedback for m
delayed neutron groups

dNðtÞ
dt
¼ qðt;NÞ � b

K

� �
NðtÞ þ

Xm

l¼1

klClðtÞ þ qðtÞ

dClðtÞ
dt

¼ bl

K
NðtÞ � klClðtÞ; l ¼ 1; . . . ;m

ð1aÞ

and generally including Newtonian feedback

qðt;NÞ ¼ q0ðtÞ � B
Z t

0
dt0Nðt0Þ ð1bÞ

as our initial consideration.
All the symbols have their usual meanings (N is power or neutron

density, Cl is the precursor concentration in group l, q is reactivity, q
is an external source, bl is the yield from fission of precursors in de-
layed group l and b is the total yield, kl is the precursor decay con-
stant for group l, K is the neutron generation time, B is the
absolute value of the temperature coefficient of reactivity and q0 is
a prescribed reactivity). Note that Eq. (1b) can also be written as

dqðt;NÞ
dt

¼ dq0ðtÞ
dt

� BNðtÞ ð2Þ

leading to the more condensed vector form for Eqs. (1) and (2)

dyðtÞ
dt
¼ Aðt;NðtÞÞyðtÞ þ qðtÞ ð3aÞ

with

yðtÞ �

NðtÞ
C1ðtÞ
� � �
ClðtÞ
qðtÞ

2
6666664

3
7777775
; qðtÞ �

qðtÞ
0
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0

dq0

dt

2
66666664

3
77777775

ð3bÞ

The Jacobian matrix is

Aðt;NðtÞÞ �

ðqðt;NðtÞÞ � bÞ=K k1 k2 � � � km 0
b1
K �k1 0 � � � � � � 0
b2
K 0 �k2 � � �
� � � � � � � � � � � �
bm
K 0 � � � 0 �km 0
�B 0 � � � � � � 0

2
666666664

3
777777775
ð3cÞ

and Eq. (3a) is to be solved subject to the following initial
conditions:

yð0Þ �

Nð0Þ
b1

k1K Nð0Þ
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bm
kmK Nð0Þ
q0ð0Þ

2
6666664

3
7777775

ð3dÞ

A straightforward derivation of the BEFD approximation begins
with the following Taylor series (from above in time) at time tj

(h = tj+1 � tj):

yðtjÞ ¼ yðtjþ1Þ � h
dyðtÞ

dt

����
tjþ1

þ
X1
k¼2

ð�1Þk

k!
yðkÞðtjþ1Þhk ð4Þ

to also play a primary role below. With substitution of Eqs. (3a) and
(4) becomes

yðtjÞ ¼ yðtjþ1Þ � h½Aðtjþ1;Nðtjþ1ÞÞyðtjþ1Þ þ qðtjþ1Þ�

þ
X1
k¼2

ð�1Þk

k!
yðkÞðtjþ1Þhk

The implicit BEFD approximation is then the first three terms of
this equation

½I� hAðtjþ1;Nðtjþ1ÞÞ�yjþ1 ¼ yj þ hqðtjþ1Þ

or, on inversion

yjþ1 ¼ ½I� hAðtjþ1; ~NÞ��1½yj þ hqðtjþ1Þ� ð5Þ

Note when tj is in an argument, then the quantity is considered
to be exact and to be approximated by the same variable when
subscripted.

At this point, we assume that the neutron density [~N] in the
Jacobian matrix A is known and represents a first approximation
to the fixed-point iteration to be described. As shown by Nobrega
(Nobrega, 1971), the sparse A-matrix conveniently lends itself to
the analytical inversion

½I� hA��1 � 1
r

1
hb1=K
1þhk1
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1þhkm

�hB

2
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with

r � 1� h
qðtjþ1; ~NÞ

K
þ
Xm

l¼1

hbl=K
1þ hkl

:

When r is zero the last expression becomes the inhour equation.
We now focus on the numerical algorithm to solve Eq. (5).

3. The PKE/BEFD algorithm and its implementation

The error of the BE approximation can be found by noting that
the true solution and approximate solutions are formally related
by

yðtjþ1Þ ¼ yjþ1 þ ejþ1 ð6Þ

By expansion of the inverse in small h in the approximate solu-
tion to Eq. (5) formally satisfies

yjþ1 ¼ yj þ
X1
k¼1

bkjh
k ð7aÞ

and from Eq. (4)

yðtjþ1Þ ¼ yðtjÞ þ
X1
k¼1

ckjh
k
: ð7bÞ

Subtracting Eqs. (7a) from (7b) and noting Eq. (6) gives

ejþ1 ¼ ej þ
X1
k¼1

½ckj � bkj�h
k ð8Þ

Then, on summing over j on [0, j], one finds an explicit form of
the error
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