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a b s t r a c t

The analysis of source-driven subcritical reactors is of great interest as it allows savings in the mineral
resources used in their cores, due to the possible transmutation of nuclear fuel burned in critical reactors.
In ADS (Accelerator Driven System) reactors the neutrons produced from spallation reactions generate an
source, external to the core, that supports its operation. Although there are different formalisms to
describe the kinetic behaviour of these reactors, its functioning remains an open question, as there is
no ADS reactor in operation. Thus, with the aim of predicting reactivity behaviour in this type of reactor,
the inverse point kinetics equation was obtained, using a specific formalism for subcritical reactors. The
results obtained were compared to Monte Carlo simulations for the purposes of validation and were
shown to be coherent, displaying deviations under 100 pcm.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Source-driven subcritical reactors have been considered around
the world as an efficient way for the transmutation of large amount
of radioactive waste, which helps reducing the volumes in geolog-
ical storage (Gandini, 2002). Apart from this, they may be an
important power generation alternative to the use of critical reac-
tors, which present more safety-related problems (Piera et al.,
2010). These reactors, also called hybrid reactors, are still in devel-
opment, which includes the studying of new fuels and reprocessing
techniques.

The kinetic behaviour of these reactors is described by different
point kinetics equations systems (Gandini, 2000; Nishihara et al.,
2003; Silva et al., 2012). Thus, aiming at predicting the reactivity
behaviour in subcritical reactors, an expression of inverse point
kinetics was obtained. The monitoring of the reactivity is critical
to the operation of any nuclear reactor and becomes even more
important in reactors operating in subcriticality, requiring a faster
method of calculation for this type of reactors. The point kinetics
model is also used for transient analyses and for the simulation
of operation transients (Rineiski et al., 2005).

The validation of the proposed inverse point kinetics for sub-
critical systems was done through the Monte Carlo (MC)
simulation.

2. Point kinetics equations

The formulation of the point kinetic equations proved to be a
powerful tool for the evaluation of reactivity for various types of
reactors (Dulla et al., 2003). This formulation describes the behav-
iour of neutrons within the reactor with no spatial dependence,
and the distribution of neutrons develops in a punctual manner.

The different representations found in the literature for the
importance function in ADS reactors results in different set of
equations. These equations satisfactorily describe subcritical sys-
tems (Silva et al., 2012) and can be obtained from the transport
equation or from the diffusion equation that govern the neutrons.
The space profile of the neutron flux in the subcritical assembly is
strongly influenced by both the neutron multiplication factor and
external neutron source (Iwanaga et al., 2008). This influence leads
to new mathematical considerations for the description of the
physical system (Dulla et al., 2003) due to the external neutron
source.

In this paper the importance function as proposed by Silva et al.
(2012) will be considered. This importance function presents an
adjoining source term that becomes significant for systems that
are far from criticality. This term is a function of the multiplication
factor 0.95 < keff < 1 and implies the following point kinetics equa-
tion system for a subcritical reactor:

K
dPðtÞ

dt
¼ ðqðtÞ � bÞPðtÞ þ k-Rf CðtÞ þ PðtÞCþ-Rf q ð1Þ

dCðtÞ
dt
¼ b

-Rf
PðtÞ � kCðtÞ; ð2Þ
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where P is the nuclear power, b is the delayed neutron fraction, q(t)
is the reactivity of the system, C(t) is the concentration of precur-
sors, K is the mean neutron generation time, - is the average en-
ergy released by fission, C is a normalizing factor, and Rf is the
fission macroscopic cross-section.

3. Inverse point kinetics

For the case of subcritical reactors, reactivity monitoring is
important during reactor startup, for low-power physical tests
and during full-power operation. This is due to the fact that, as
the nuclear fuel is burned one has to adjust the proton beam inten-
sity to keep the production of electricity constant during normal
operation.

The expression for reactivity can be easily obtained from the
point kinetics equations which describe the evolution in time of
the distribution of neutrons and of the concentrations of the de-
layed neutron precursors in the core of a nuclear reactor (Diaz
et al., 2007).

To do this is necessary solve the Eqs. (1) and (2) to explicit q(t).
Thus, starting from Eq. (2) and using the integrating factor method,
one has that:

CðtÞ ¼ b
x � Rf

Z t

�1
Pðt0Þe�kðt0�tÞdt0 ð3Þ

Replacing Eq. (3) in Eq. (1), one obtains that:

dPðtÞ
dt
¼ ðqðtÞ � bÞ PðtÞ

K
þ kb

K

Z t

�1
Pðt0Þe�kðt0�tÞdt0 þ C � PðtÞ

K
þ Q ; ð4Þ

where Q �xRfq/K is the term for the external neutron source.
Solving Eq. (4) for q(t), one has:

qðtÞ ¼ bþ Cþ K
PðtÞ

dPðtÞ
dt
� kb

PðtÞ

Z t

�1
e�kðt�t0 ÞPðt0Þdt0 � KQ

PðtÞ : ð5Þ

Working out Eq. (5) we can find that,

qðtÞ ¼ bþ Cþ K
PðtÞ

dPðtÞ
dt
� bP0

PðtÞ e
�kt � KQ

PðtÞ �
kb

PðtÞ IðtÞ; ð6Þ

being I(t) the nuclear power history,

IðtÞ ¼
Z t

0
e�kðt�t0 ÞPðt0Þdt0 ð7Þ

Integrating Eq. (7) by parts, it is possible to write

IðtÞ ¼ PðtÞ
k
� Pð0Þ � e�k�t

k
� 1

k

Z t

0
Pð1Þðt0Þ � e�k�ðt�t0 Þdt0; ð8Þ

where P(1)(t) is the first-order derivative of nuclear power in rela-
tion to the time.

Solving the integral in the Eq. (8) by parts again, a new expres-
sion that involves another integral with the derivative of second
order of the nuclear power is obtained. So, repeating this procedure
n times one obtains a series for the nuclear power with time
dependence (Diaz et al., 2007). Thus, one can write that:

Z t

0
e�kðt�t0 ÞPðt0Þdt0 þ

Z t

0

Pðkþ1Þðt0Þ � e�k�ðt�t0Þ

kkþ1 dt0

¼
Xk

n¼0

ð�1Þn PðnÞðtÞ
knþ1�

Xk

n¼0

ð�1Þn PðnÞð0Þ � e�k�t

knþ1 ð9Þ

Supposing k is an odd number, it follows that k = 2k � 1. Thus, Eq.
(9) can be written as

Z t

0
e�kðt�t0 ÞPðt0Þdt0 þ

Z t

0

Pð2kÞðt0Þ � e�k�ðt�t0 Þ

k2k
dt0

¼
X2k�1

n¼0

ð�1Þn PðnÞðtÞ
knþ1 �

X2k�1

n¼0

ð�1Þn PðnÞð0Þ � e�k�t

knþ1 : ð10Þ

Assuming the following conditions:

Pð2n�1ÞðtÞ ¼ Pð1ÞðtÞ Pð2ÞðtÞ
PðtÞ

( )n�1

ð11Þ

Pð2nÞðtÞ ¼ Pð1ÞðtÞ Pð2ÞðtÞ
PðtÞ

( )n

; ð12Þ

being Pð2ÞðtÞ
PðtÞ ¼ c; where c is a constant.Now one can write Eq. (10) as

follows:Z t

0
e�kðt�t0 ÞPðt0Þdt0 ¼ S1 þ S2; ð13Þ

being:

S1 ¼
1

1� Pð2ÞðtÞ
PðtÞ

n onh iX2k�1

n¼0

ð�1Þn

knþ1 PðnÞðtÞ ð14Þ

S2 ¼ �
1

1� Pð2ÞðtÞ
PðtÞ

n onh iX2k�1

n¼0

ð�1Þn

knþ1 PðnÞðtÞ � e�k�t ð15Þ

Rewriting the summation of Eq. (14) and using the conditions im-
posed by Eqs. (11) and (12), one has

X2k�1

n¼0

ð�1Þn

knþ1 PðnÞðtÞ ¼ PðtÞ
k
� Pð1ÞðtÞ

k2

" #
�
1� Pð2ÞðtÞ

k2 �PðtÞ

n on

1� Pð2ÞðtÞ
k2 �PðtÞ

: ð16Þ

Replacing Eq. (16) in Eqs. (14) and (15), the following expressions
for S1 and S2 are obtained:

S1 ¼
kPðtÞ � Pð1ÞðtÞ
k2PðtÞ � Pð2ÞðtÞ

� PðtÞ: ð17Þ

S2 ¼ �
kPð0Þ � Pð1Þð0Þ
k2Pð0Þ � Pð2Þð0Þ

� Pð0Þ � e�k�t : ð18Þ

In fact, the result is the same for k odd or even (Diaz et al.,
2007).

Finally, substituting Eqs. (13), (17), and (18) in Eq. (6) the in-
verse point kinetics equation for subcritical systems used in this
paper is obtained:

qðtÞ ¼ bþ Cþ K
PðtÞ

dPðtÞ
dt
� bP0

PðtÞ e
�kt � k � b

PðtÞ

� k � PðtÞ � Pð1ÞðtÞ
k2PðtÞ � Pð2ÞðtÞ

� PðtÞ � k � Pð0Þ � Pð1Þð0Þ
k2Pð0Þ � Pð2Þð0Þ

� Pð0Þ � e�k�t

( )

�K � Q
PðtÞ :

ð19Þ

Eq. (19) allows the reactivity calculation to be made faster when
compared with the time needed to numerically solve the integral
of the power history, Eq. (7). Apart from that, Eq. (19) does not need
the storing of the entire reactor power history, and the calculation
can be restarted at any time and the extension is straightforward
for six delayed neutron precursors groups (Diaz et al., 2007).
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