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a b s t r a c t

The three-dimensional radiative transport equation is solved for modeling the propagation of neutrons
due to a line source which is placed in an anisotropically scattering half-space medium considering
the effect of internal reflection at the interface. The application of the Fourier transform in the transverse
directions and a modified spherical harmonics transform with respect to the angular variables lead to an
expression for the specific intensity in terms of analytical functions. The final results are verified with
Monte Carlo simulations.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

One of the classic problems in multi-dimensional neutron
transport theory which is closely related to the searchlight prob-
lem (Siewert and Dunn, 1989) is that of a line source which is
placed within a scattering half-space medium (Williams, 1982;
Loyalka and Williams, 2009). The motion and interaction of neu-
trons with materials are described with the neutron transport
equation (RTE) (Case and Zweifel, 1967; Duderstadt and Martin,
1979). Besides the reactor physics field, line sources are also in-
volved in different applications of nuclear medicine or in the radi-
ative heat transfer (Carslaw and Jaeger, 1959). The line source
problem in the half-space geometry with an internal reflecting sur-
face has been solved analytically by Williams (1982) and Williams
(2007). The obtained solutions are based on a line source which is
placed perpendicular to the surface of an isotropically scattering
medium. The theory is developed by considering different integral
transforms together with the Wiener–Hopf technique and making
use of the generalized Chandrasekhar H-functions (Williams,
2007). In addition, the solution of the corresponding diffusion
equation (DE) is presented and compared to the transport theory
with satisfactory agreements (Williams, 2007). In the publication
of Loyalka and Williams (2009) the authors make use of the analyt-
ical solutions obtained in Williams (2007) and report numerous
numerical results which are useful for verification. In the case of
anisotropic scattering solutions to the multi-dimensional RTE are

mainly based on numerical methods or approximative equations.
The Monte Carlo (MC) method was frequently used as numerical
solution of the RTE (Duderstadt and Martin, 1979), but also other
techniques like the finite element (Mohan et al., 2011), the finite-
difference (Hielscher et al., 1998) or the discrete-ordinate method
(Ganapol, 2011) were applied.

In this article we consider the line source problem for the case
of an anisotropic scattering half-space medium with internal
reflection. To this end we start in the same way as Williams by per-
forming a two-dimensional Fourier transform with respect to the
transverse directions. Then, the infinite medium line spread func-
tion is derived by making use of the modified spherical harmonics
(SH) method (Markel, 2004; Panasyuk et al., 2006; Machida et al.,
2010). Finally, the boundary-value problem in the semi-infinite
geometry is solved via superposition of the homogeneous and par-
ticular solution. The obtained equations are compared with the
Monte Carlo method and with the diffusion approximation (DA).

2. Theory

The specific intensity Iðr; ŝÞ caused by the internal source Sðr; ŝÞ
obeys the three-dimensional RTE (Williams, 2007)

ŝ � rIðr; ŝÞ þ lt Iðr; ŝÞ ¼ ls

Z
Iðr; ŝ0Þf ðŝ � ŝ0Þ d2s0 þ Sðr; ŝÞ; ð1Þ

where lt = la + ls is the total attenuation coefficient, la the absorp-
tion coefficient and ls the scattering coefficient. The unit vector
ŝ ¼ ðl;/Þ with l = cosh specifies the direction of the particle prop-
agation and f ðŝ � ŝ0Þ is the probability density function for describing
the direction of the scattered neutrons. In order to solve Eq. (1) sub-
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ject to boundary conditions we afore consider the interactions of
neutrons far from interfaces which leads to the solution for the infi-
nite medium. After that the boundary-value problem is solved via
superposition of the homogeneous and particular solution.

2.1. Green’s function for the infinite medium

In this section Eq. (1) is considered for an infinitely long isotro-
pic line source Sðr; ŝÞ ¼ dðxÞdðyÞ=ð4pÞ in a three-dimensional uni-
form medium. Due to the given cylinder symmetry the expected
solution will be independent on the spatial variable z. By expand-
ing the specific intensity in form of the Fourier integral

Iðr; ŝÞ ¼ 1

ð2pÞ2
Z

Iðq; z; ŝÞeiq�qd2q ð2Þ

Eq. (1) becomes in the two-dimensional spatial frequency
domain

½lt þ iq sin h cosð/� /qÞ�Iðq; ŝÞ ¼ ls

Z
Iðq; ŝ0Þf ðŝ � ŝ0Þ d2s0 þ 1

4p
:

ð3Þ

In order to solve the above integral equation the specific inten-
sity is expanded in terms of spherical harmonics (SH)

Iðq; ŝÞ ¼
X1
l¼0

Xl

M¼�l

IlMðqÞYlMðŝ; k̂Þ; ð4Þ

whose orientation coincides with the direction of the unit vector
k̂ ¼ ðcos /q; sin /q;0Þ. Thus, k̂ represents the two-dimensional wave
vector q̂. The rotated SH YlMðŝ; k̂Þ are given by a linear combination
of 2l + 1 conventional spherical functions YlmðŝÞ ¼ Ylmðŝ; ẑÞ (Pana-
syuk et al., 2006; Machida et al., 2010)

YlMðŝ; k̂Þ ¼
Xl

m¼�l

dl
mMðhkÞYlmðŝÞe�im/k ; ð5Þ

where dl
mMðhkÞ is the Wigner d-function. In the following the angles

of rotation are given by hk = p/2 and /k = /q. In that case the Wigner
d-function takes the value

dl
m0ðp=2Þ ¼ 2mffiffiffiffi

p
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl�mÞ!
ðlþmÞ!

s
cos

lþm
2

p
� �

C½ðlþmþ 1Þ=2�
C½ðl�mþ 2Þ=2� ; ð6Þ

where C(x) denotes the Gamma function. The rotationally invariant
scattering phase function depends only on the cosine ŝ � ŝ0 and be-
comes in SH decomposition the form

f ðŝ � ŝ0Þ ¼
X

lM

f lYlMðŝ; k̂ÞY�lMðŝ0; k̂Þ; ð7Þ

where fl are the expansion coefficients which are given by

fl ¼ 2p
Z 1

�1
f ðlÞPlðlÞ dl: ð8Þ

Due to reasons regarding the numerical implementation all SH ser-
ies are truncated at lmax = N, where I�1,M(q) = IN+1,M(q) = 0 and N is
always assumed to be an odd number. Now by inserting (4) in
(3), making use of the recurrence relation

ðk̂ � ŝÞYlMðŝ; k̂Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 �M2

4l2 � 1

s
Yl�1;Mðŝ; k̂Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 1Þ2 �M2

4ðlþ 1Þ2 � 1

s
Ylþ1;Mðŝ; k̂Þ;

ð9Þ

as well as the orthogonalityZ
YlMðŝ; k̂ÞY�l0 ;M0 ðŝ; k̂Þ d2s ¼ dll0dMM0 ; ð10Þ

we obtain the following set of linear equations

iq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 �M2

4l2 � 1

s
Il�1;MðqÞ þ iq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 1Þ2 �M2

4ðlþ 1Þ2 � 1

s
Ilþ1;MðqÞ þ rlIlMðqÞ

¼ dl0dM0ffiffiffiffiffiffiffi
4p
p ; ð11Þ

where rl = la + (1 � fl)ls and l = 0, . . . , N. The above system has in
principle the same relatively simple structure as the PN equations
for plane symmetric radiative transfer problems (Case and Zweifel,
1967) which is due to the rotated reference frame. Note also that a
result of the isotropic line source is that we only must consider one
system namely for the value M = 0 resulting in N + 1 linear equa-
tions. On the other hand more complicated sources such as the uni-
directional line source can be directly implemented by calculating
the corresponding expansion coefficients. In matrix notation system
(11) can be written as (T2 + iq W)jIi = jbi, with vector components
hljIi = Il0(q) and hljbi ¼ dl0=

ffiffiffiffiffiffiffi
4p
p

. The matrix T is a diagonal matrix
with elements Tll0 ¼

ffiffiffiffiffi
rl
p

dll0 . Next, we consider the symmetric tridi-
agonal matrix

T�1WT�1 ¼

0 b1 0 0 � � � 0

b1 0 b2 0 � � � ..
.

0 b2
. .

. . .
.

� � � 0

0 0 . .
. . .

. . .
.

0
..
.
� � � � � � . .

.
0 bN

0 � � � 0 0 bN 0

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
; ð12Þ

where bl ¼ l=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l� 1Þð2lþ 1Þrl�1rl

p
. By performing uniquely the

eigenvalue decomposition (EVD) UKU�1 = T�1WT�1, the solution
of (11) can be obtained with an analytical dependence on the scalar
wave number q. The EVD yields all in all N + 1 real-valued eigen-
values ki which appear in pairs. An eigenvalue ki corresponds with
an eigenvector jmii having components hljmii, whereas the negative
value �ki leads to the components (�1)lhljmii (Markel, 2004). After
some algebraic rearrangement we find

IlMðqÞ ¼
dM0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pr0rl
p

X
ki

hljmiihmij0i
1þ iqki

: ð13Þ

By inserting (13) in (4) and considering the above mentioned
properties of the eigenvector components we arrive at the line
spread function in Fourier space

Iðq; z; ŝÞ ¼
XN

l¼0

Xl

m¼�l

IlmðqÞYlmðŝÞe�im/q ; ð14Þ

with coefficients

IlmðqÞ ¼
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pr0rl
p

X
ki>0

hljmiihmij0i
k2

i

� 1þ ð�1Þl � iqki½1� ð�1Þl�
q2 þ 1=k2

i

dl
m0ðp=2Þ: ð15Þ

The inverse Fourier transform regarding the angular variable
can be performed by making use of the relationZ 2p

0
eiqq cosð/q�/qÞe�im/q d/q ¼ 2pimJmðqqÞe�im/q ; ð16Þ

where Jm(x) is the Bessel function of the first kind. Note that the va-
lue dl

m0ðp=2Þ is only non-zero if l + m is even which leads to the fact
that the sign of (�1)l from (15) coincides with that of (�1)m. Thus,
the resulting inverse Hankel transform becomes exactly the same as
for the two-dimensional infinitely extended disc geometry (Liemert
and Kienle, 2011). Upon its evaluation the specific intensity for the
unbounded anisotropically scattering medium is obtained as
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