
Technical Note

Fractional-space law for the neutron current density

G. Espinosa-Paredes a,⇑, R. Vázquez-Rodríguez a, E. del Valle Gallegos b, G. Alonso c, N.M. Moghaddam d

a Área de Ingeniería en Recursos Energéticos, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186 Col. Vicentina, México, D.F. 09340, Mexico
b Dpto. de Física, Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional s/n, Col. Lindavista, México, D.F. 07738, Mexico
c Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca s/n, 52750, Municipio de Ocoyoacac, Estado de México, Mexico
d Department of Nuclear Engineering and Physics, Amirkabir University of Technology (Tehran Polytechnic), Hafez street, Tehran, Iran

a r t i c l e i n f o

Article history:
Received 17 August 2012
Accepted 10 December 2012
Available online 19 January 2013

Keywords:
Netron current density
Diffusion equation
Fractional calculus
DFA method
Forsmark Nuclear Power Plant
Laguna Verde Nuclear Power Plant

a b s t r a c t

In this work, a fractional constitutive law (FCL) for the average neutron motion in nuclear reactors is pre-
sented. The FCL has a fractional exponent of the differential operator, which is the new unknown. The
application of the FCL in the neutron balance equation leads to the fractional diffusion equation. The frac-
tional exponent was evaluated using detrended fluctuation analysis (DFA). The DFA technique is based on
the random walk theory and was applied to a power signal of the Forsmark Boiling Water Nuclear Reac-
tor. The results show that the fractional exponent is between 0.1881 and 0.9399 for stationary operation,
load changes and unstable conditions.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In a previous work (Espinosa-Paredes et al., 2008) it was studied
the process of neutron diffusion, which takes place in a highly het-
erogeneous hierarchical configuration as is illustrated in Fig. 1. The
scaling considered for these authors are: (1) a nuclear reactor core,
(2) fuel assembly which is an array of the fuel cell, and (3) the array
of the fuel rod. Normally these arrays (assemblies, cells and rods)
are periodic with an anisotropy characterized by the nominal array
geometry (Todreas and Kazimi, 1990). In order to describe the neu-
tron transport process in this system, the neutron diffusion con-
cept is a tool commonly used to understand the complex
behavior of the neutrons average motion. Most reactor studies treat
the neutron motion as a diffusion process, where it is assumed that
neutrons motion in the average tends to diffuse from regions of
high neutron flux to regions of low neutron flux, i.e., regions from
high linear momentum to regions of lower linear momentum. The
treatment of the neutron transport as a diffusion process has only
limited validity because neutron tends to stream at relatively large
distances between interactions.

The diffusion theory provides a strictly valid mathematical
description of the neutron flux when the following assumptions
are satisfied: (1) Absorption much less than scattering, (2) smooth
spatial variation of the neutron distribution in the scattering med-
ia, and (3) isotropic scattering (Stacey, 2004). The first condition is

satisfied for most of the moderating and structural materials found
in a nuclear reactor, but not for the fuel and control elements. The
second condition is satisfied a few mean free paths away from the
boundary of large homogeneous medium with relatively uniform
source distribution. The third condition is satisfied for scattering
from heavy atomic mass nuclei.

With the idea of improving the diffusion theory, a nuclear reac-
tor diffusion equation for the large scale was obtained by Vázquez-
Rodríguez et al. (2009) using the volume averaged method (VAM),
and it was obtained the extended linear neutron diffusion equation
(LENDE). The VAM was used as a homogenization method whose
starting point is the classical neutron diffusion model. The VAM
is comparable to the cell-averaging technique. This is a traditional
method of homogenization used in nuclear engineering, which in-
cludes the disadvantage factor, n, used to obtain the effective cross
sections at a cell level, i.e., n is a weighting parameter in a spatial
cell (Duderstadt and Hamilton, 1976). The consequences of the for-
mulation of the large scale were analyzed by Espinosa-Paredes and
Vázquez-Rodríguez (2011). These authors, considered a planar
source located in the origin of a semi-infinite homogeneous med-
ium to study the effects of the correction terms of the LENDE.
The results obtained with the LENDE approximation were com-
pared with an analytical benchmark based on one-dimensional
transport theory. The comparison of the results demonstrate the
excellent tendency and agreement, between the linear-extended
diffusion theory and the reference transport theory calculation,
which implies that the correction terms of the LENDE, are physi-
cally acceptable.
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Other approximation to improve some of the limitations of the
theory of diffusion was proposed by Espinosa-Paredes et al. (2008).
These authors consider the following a fractional constitutive law
for the neutron current (J):

sj @
jJc
@tj
þ Jc ¼ �Dcr/c; for 0 < j < 1 ð0Þ

where the fractional derivative operator @j/@tj is defined in the Rie-
mann–Liouville’s sense (Oldham and Spanier, 1974) and j is the
anomalous diffusion exponent. In the limit when s ? 0, the Fick’s
law is recovered, (i.e., Jc = �Dcruc) and when j ? 1 a finite wave
propagation velocity for the diffusion process is obtained (as is de-
fined by Chen et al., 2008), and s ¼ 3Dc

t . It is important to consider
that in time-dependent problems, the diffusion equation fails to de-
scribe the front of streaming generating from a source, even for a
highly scattering medium due to the parabolic nature of the diffu-
sion equation (infinite particle velocity). Then, the P1 approximation
for the Boltzmann equation, which gives rise to the Telegrapher’s
equation, replaces this feature of an infinite velocity with a wrong
finite velocity (given by tffiffi

3
p ), in this sense the proposal of the consti-

tutive law given by Eq. (0) becomes relevant.
The consequences of the Eq. (0) were studied by Espinosa-Pare-

des and Polo-Labarrios (2012). These authors presented a new
approximation from the solution of the time-dependent Boltz-
mann equation, which includes a fractional constitutive equation
of the neutron current density (Eq. (0)), for a general medium.
The propagation velocity found by these authors with the frac-
tional constitutive law is tffiffiffiffi

3j
p . The results of this approximation

were compared with the exact solution and Hailer’s approximation
(Heizler, 2010).

In this work we explore a fractional constitutive law of the neu-
tron current density that considers effects that modify the neutron
diffusion theory. The fractional diffusion model developed in this
work can be applied where large variations on neutron cross sec-
tions normally preclude the use of the classical neutron diffusion
equation, specifically, the presence of strong neutron absorbers
in the fuel, and control rods to force shutdowns of the reactor.

2. Preliminaries

Consider the processes of collision and reaction in a reactor core
with the characteristic length scales given in Fig. 1, where the
material fuel is dispersed in lumps within the moderator. It is
stressed that this figure represents only one of a variety of spacer
designs now in use. We assume that in the highly heterogeneous
configuration there are only ‘‘two materials’’ present in the system;
namely, the fuel (r) and moderator (c). In this paper, in order to
illustrate the analysis of neutron diffusion and non-diffusion pro-
cesses we assume that all the neutrons in the reactor have the
same speed and that the angular flux is only linearly anisotropic.
Then, the conservation equation that governs the neutron collision
and reaction processes in the moderator (c) in this system, as well
as the initial conditions and boundaries at interfaces are given by
(Duderstadt and Hamilton, 1976):

c-moderator

1
t
@/c

@t
þr � Jcðr; tÞ þ RacðrÞ/cðr; tÞ ¼ Scðr; tÞ ð1Þ

1
t
@Jcðr; tÞ
@t

þ 1
3
r/cðr; tÞ þ RtrcðrÞJcðr; tÞ ¼ Sc1ðr; tÞ; ð2Þ

Initial condition

/cðr;0Þ ¼ /c0ðrÞ ð3Þ

Boundary conditions

�ncr � Dcr/c ¼ �ncr � Drr/r at cr-interface ð4Þ

/r ¼ /r; at cr-interface ð5Þ

where u is the neutron flux, J is the vector current density, Ra is the
absorption cross section, S is the neutron source, D is the neutron
diffusion coefficient and ncr is the unit normal vector directed from
the c-phase towards the r-phase.

In these equations

RaðrÞ ¼ RtðrÞ � RsðrÞ ð6Þ

RtrðrÞ ¼ RtðrÞ � �l0RsðrÞ ð7Þ
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Fig. 1. Characteristic lengths of the system. (a) Nuclear reactor core; (b) Scale I: fuel assembly; (c) Scale II: array of the fuel rod.
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