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a b s t r a c t

The present work is concerned with the solution of a problem on fractional order theory of thermoelas-
ticity for a functional graded material. The governing equations of fractional order generalized thermo-
elasticity with one relaxation time for functionally graded materials (FGM) (i.e. material with spatially
varying material properties) are established. These equations are expressed in Laplace transform domain.
The analytical solution in the transform domain is obtained by using the eigenvalue approach. The inver-
sion of Laplace transform is done numerically. Finally, the results obtained are presented graphically to
show the effect of the fractional and nonhomogeneity parameters and time on displacement, tempera-
ture, and stress.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

There are a number of significant problems in engineering
requiring thermal stress analysis. An important class of problems
arises in mechanical engineering and includes the analysis of
machine components subjected to high temperature environments
and large temperature variations such as in a turbine. During
recent years, several interesting models have been developed by
using fractional calculus to study the physical processes particu-
larly in the area of heat conduction, diffusion, mechanics of solids,
electricity, etc. In such cases, one needs to use a generalized ther-
moelasticity theory based on an anomalous heat conduction model
involving time-fractional (non-integer order) derivatives. Abel [1]
who applied fractional calculus in the solution of an integral equa-
tion gave the first application of fractional derivatives. Caputo [2]
gave the definition of fractional derivatives of order 0 < a 6 1 of
continuous function. Caputo and Mainardi [3,4] and Caputo and
Mainardi [5] have employed the fractional order derivatives for
the description of viscoelastic materials and have established the
connection between fractional derivatives and the theory of linear
viscoelasticity and found a good agreement with the experimental
results. Among the few works devoted to applications of fractional
calculus to thermoelasticity, we can refer to the works of Pov-
stenko [6,7], who introduced a fractional heat conduction law,

found the associated thermal stresses. Sherief et al. [8], Youssef
[9] and Ezzat [10,11] introduced new models of thermoelasticity
using a fractional heat conduction equation.

Functionally graded material (FGM) as a new kind of compos-
ites were initially designed as thermal barrier materials for aero-
space structures, in which the volume fractions of different
constituents of composites vary continuously from one side to
another Suresh and Mortensen [12]. These novel nonhomogeneous
materials have excellent thermo-mechanical properties to with-
stand high temperature and have extensive applications to impor-
tant structures, such as pressure vessels, chemicals plants,
aerospace, and pipes and nuclear reactors. Mallik and Kanoria
[13], Das and Kanoria [14] applied a periodically varying heat
source in generalized thermoelastic functionally graded solid.
Abbas [15] discussed the effect of relaxation times in a non-homo-
geneous hollow cylinder using finite element method. Othman and
Abbas [16] studied the generalized thermoelasticity of thermal
shock problem in a non-homogeneous isotropic hollow cylinder
with energy dissipation. Abbas and Zenkour [17] have constructed
a LS model on electro-magneto-thermo-elastic response of an infi-
nite functionally graded cylinder.

The present investigation is devoted to study the fractional
order generalized thermoelasticity in a functionally graded mate-
rial in presence of thermal shock by using Laplace transform and
eigenvalue approach. Then the inversion of Laplace transform have
been carried out numerically by applying a method of numerical
inversion of Laplace transform based on Stehfest technique [18].
Numerical results for all variables in physical space–time domain
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are represented graphically. It is observed that the results of asso-
ciated Lord and Shulman model [19] and the homogeneous case
may easily be recovered from our results by letting the fractional
parameter become one and nonhomogeneity parameter become
zero respectively.

2. Basic equation

Following Ezzat [11], the basic equations of fractional order the-
ory of thermoelasticity for a functionally graded material in the
absence of body forces and heat sources are considered as

The equations of motion

rij;j ¼ q
@2ui

@t2 ð1Þ

The equation of heat conduction

e ¼ eii; i; j ¼ x; y; z; ð2Þ

The constitutive equations are given by

rij ¼ 2leij þ ½ke� cðT � T0Þ�dij; ð3Þ

with e ¼ eii; i; j ¼ x; y; z, where k; l are the Lame’s constants; q is
the density of the medium; ce is the specific heat at constant strain;
c ¼ 3kþ 2lð Þat ; at is the coefficient of linear thermal expansion; t
is the time; T is the temperature; T0 is the reference temperature;
K is the thermal conductivity; t0 is the relaxation time;dij is the
Kronecker symbol;rij are the components of stress tensor; ui are
the components of displacement vector. Thus, we replace
k; l; c; K and q by kof ðXÞ; lof ðXÞ; cof ðXÞ; Kof ðXÞ and qof ðXÞ
where ko; lo; co; Ko and qo are assumed to be constants and f ðXÞ
is a given dimensionless function of the space variable
X ¼ ðx; y; zÞ. Then Eqs. (1)–(3) take the following form

f ðXÞ½2loeij þ ½koe� coðT � T0Þ�dij�;j þ f ðXÞ;j½2loeij þ ½koe� coðT � T0Þ�dij�

¼ qof ðXÞ @
2ui

@t2 ; ð4Þ

ðKof ðXÞT ;iÞ;i ¼
@

@t
þ ta0

a!

@aþ1

@taþ1

 !
ðqocef ðXÞT þ cof ðXÞT0eÞ; 0 < a 6 1;

ð5Þ
rij ¼ f ðXÞ½2loeij þ ½koe� coðT � T0Þ�dij�; ð6Þ

3. Formulation of the problem

Let us consider a functionally graded isotropic thermoelastic
body at a uniform reference temperature T0, occupying the region
x P 0 where the x-axis is taken perpendicular to the bounding
plane of the half-space pointing inwards. It assumed that the state
of the medium depends only on x and the time variable t, so that
the displacement vector ~u and temperature field T can be
expressed in the following form:
~u ¼ ðuðx; tÞ;0;0Þ; T ¼ Tðx; tÞ: ð7Þ

It assumed that the material properties depend only on the x-coor-
dinate. So, we take f ðXÞ as f ðxÞ. In the context of the fractional order
of generalized thermoelasticity theory based on the Lord and Shul-
man model, the equation of motion, heat equation, and constitutive
equation can be written as

f ðxÞ ðko þ 2loÞ
@2u
@x2
� co

@T
@x

" #
þ @f ðxÞ

@x
ko þ 2lo

� � @u
@x
� coT

� �
¼ qof ðxÞ @

2u
@t2 ;

ð8Þ

Kof ðxÞ@
2T
@x2þKo

@f ðxÞ
@x

@T
@x
¼ @

@t
þ ta

0

a!

@aþ1

@taþ1

 !
qocef ðxÞTþcof ðxÞT0

@u
@x

� �
;

ð9Þ

rxx ¼ f ðxÞ ðko þ 2loÞ
@u
@x
� coðT � T0Þ

� �
; ð10Þ

We define the following dimensionless quantities

ðx0;u0Þ ¼ c
v ðx;uÞ; T 0 ¼ T �T

T0
; ðt0; t00Þ ¼

c2

v ðt; t0Þ; r0xx ¼
rxx

koþ2lo
:

where c2 ¼ ko þ 2lo

q
and v ¼ Ko

qoce
:

Upon introducing in Eqs. (8)–(10), and after suppressing the primes,
we obtain

f ðxÞ @
2u
@x2 � b

@T
@x

" #
þ @f ðxÞ

@x
@u
@x
� bT

� �
¼ f ðxÞ @

2u
@t2 ; ð11Þ

f ðxÞ @
2T
@x2 þ

@f ðxÞ
@x

@T
@x
¼ @

@t
þ ta

0

a!

@aþ1

@taþ1

 !
f ðxÞT þ f ðxÞe @u

@x

� �
; ð12Þ

rxx ¼ f ðxÞ @u
@x
� bT

� �
; ð13Þ

where b ¼ T0co
koþ2lo

; e ¼ co
qoce

; in which co ¼ ð3ko þ 2loÞat .

4. Exponential variation of non-homogeneity

We take f ðxÞ ¼ enx, where n is a dimensionless constant [13].
Then Eqs. (11)–(13) reduce to

@2u
@x2 � b

@T
@x

" #
þ n

@u
@x
� bT

� �
¼ @

2u
@t2 ; ð14Þ

@2T
@x2 þ n

@T
@x
¼ @

@t
þ ta

0

a!

@aþ1

@taþ1

 !
T þ e

@u
@x

� �
; ð15Þ

rxx ¼ enx @u
@x
� bT

� �
: ð16Þ

5. Application

In order to solve the problem, both the initial conditions and the
boundary conditions needed to be considered. The initial condi-
tions of the problem are assumed to be homogeneous. Then we
have

uðx;0Þ ¼ @uðx;0Þ
@t

¼ 0; Tðx;0Þ ¼ @Tðx;0Þ
@t

¼ 0: ð17Þ

We consider the problem of a thick plate of finite high l. Choosing
the x-axis perpendicular to the surface of the plate with the origin
coinciding with the lower plate, the region W under consideration
becomes:

W is function of fðx; y; xÞ : 0 6 x 6 l; �1 < y <1; �1
< z <1g. The surface of the plate is taken to be traction free.
The lower plate is subjected to a thermal shock. The upper plate
is kept at zero temperature. Mathematically these can be written

rxxð0; tÞ ¼ 0; Tð0; tÞ ¼ T1HðtÞ; ð18Þ
rxxðl; tÞ ¼ 0; Tðl; tÞ ¼ 0; ð19Þ

where HðtÞ denotes the Heaviside unit step function.

6. Governing equations in the Laplace transform domain

Applying the Laplace transform for Eqs. (14)–(19) define by the
formula
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