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a b s t r a c t

A new hybrid stochastic–deterministic transport theory method, which is designed to couple with diffu-
sion theory, is presented. The new method is an extension of the incident flux response expansion
method, and it combines the speed of diffusion theory with the accuracy of transport theory. With ease
of use in mind, the new method is derived in such a way that it can be implemented with only minimal
modifications to an existing diffusion theory method. A new angular expansion, which is necessary for
the diffusion theory coupling, is developed in 2D and 3D. The method is implemented in 2D hexagonal
geometry, and an HTTR benchmark problem is used to test its accuracy in a standalone configuration.
It is found that the new method produces excellent results (with average relative error in partial current
less than 0.033%) when compared with Monte Carlo reference solutions. Furthermore, the method is fast,
solving all test cases in less than 12 s.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The design of nuclear reactors involves frequent calculations to
determine core eigenvalues and power shapes. Ideally, these calcu-
lations would be performed with the most accurate transport the-
ory methods available, whether stochastic or deterministic.
However, these most-accurate methods typically require hours,
days, or even weeks of computing time to deliver results. For rou-
tine design calculations, this may not be practical, and reactor
designers often compromise by using methods based on diffusion
theory or low order transport, which trade accuracy for speed.

The solution of a whole-core eigenvalue problem with the cur-
rent generation of diffusion theory methods typically involves a
two-step procedure (Lawrence, 1986; Smith, 1986):

1. Calculate homogenized parameters (cross-sections and discon-
tinuity factors) for each lattice cell (for example an assembly)
using a detailed, transport theory calculation with specularly
reflective boundary conditions.

2. Use the homogenized parameters in a nodal diffusion theory
calculation to compute the whole-core solution.

For this procedure to result in accurate solutions, at least a cou-
ple of assumptions must be satisfied. The first assumption is that

the homogenized parameters (generated with zero leakage bound-
ary conditions) are insensitive to the presence of inter-assembly
leakage. In general this does not hold for configurations with core
and assembly heterogeneity. The second assumption is that nodal
diffusion theory provides an adequate approximation to neutron
transport theory. However, diffusion theory breaks down in the
presence of strong absorbers and near heterogeneous material
interfaces (Stacey, 2007).

In reality, nodal diffusion theory produces results that are ‘‘good
enough’’ when used to model the current generation of operating
Light Water Reactors (LWRs). However, the limitations of the
two-step homogenization–diffusion process are manifest when it
is applied to prismatic gas-cooled reactors such as the (very) high
temperature gas-cooled reactor (VHTR) designs. Because they are
highly heterogeneous and optically thin, these reactors challenge
methodologies that rely on homogenization and diffusion theory
for whole-core calculations.

This work will present a fully heterogeneous transport theory
method suitable for coupling to diffusion theory methods in hexag-
onal geometry. Because the method is based on transport theory
and because it is fully heterogeneous, it requires neither of the
above stated assumptions to produce accurate results. The method
is designed to work alongside existing diffusion theory codes. Thus,
one can use heterogeneous transport theory where diffusion the-
ory breaks down while retaining the use of diffusion theory where
it provides an adequate approximation. In this way the methodol-
ogy is both fast and accurate.
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1.1. Methods for nodal diffusion theory in hexagonal geometry

There has been a large amount of research aimed at validating
various strategies for nodal diffusion theory in hexagonal geometry
(Arkuszewski, 1986; Chao and Shatilla, 1995; Cho et al., 2001; Cho
and Kim, 1998; Cho and Lee, 2006; González-Pintor et al., 2009;
Knight et al., 1995; Lee and Cho, 2006; Lozano et al., 2010; Tomaše-
vic and Müller, 2009; Xia and Xie, 2006; Zimin and Baturin, 2002),
and most of these works demonstrate nodal diffusion theory meth-
ods with excellent agreement (less than 50 pcm error in eigenvalue
and less than 1% error in assembly powers) to reference solutions.
In all of these studies, however, a fine-mesh diffusion theory code
is used to calculate the reference solution, and the reference solu-
tion is performed with homogenized blocks. Thus, these works
mainly demonstrate that the various coarse-mesh diffusion theory
methods can reproduce the solutions of fine-mesh diffusion theory
methods given the same homogenized cross-sections.

In some cases, even code-to-code comparison between hexago-
nal diffusion theory methods produces large discrepancies. A study
of steady-state VVER-1000 benchmarks—prompted by discrepan-
cies in previous transient benchmarks—found eigenvalue differ-
ences of 470–910 pcm and assembly power differences up to
6.6% between two diffusion methods in hexagonal geometry (Iva-
nov et al., 2006). Because both methods used the same set of cross
sections, these results are attributed to differences between the
two treatments of hexagonal geometry and also to high flux gradi-
ents at the fuel-reflector boundary.

When the coupled RELAP5/PARCS code was used in a study of
the VVER-1000 coolant trip benchmark, errors were found to be
greatest on the core periphery and inaccurate assembly disconti-
nuity factors (ADFs) were cited as the most likely cause (Bousbia
Salah et al., 2006). While it is unfair to condemn diffusion theory
solely based on a transient benchmark, these results highlight a
problem shared by all diffusion methods: the difficulty of modeling
the core boundary.

There has been recent work aimed at enhancing DIF3D for use
on prismatic VHTR problems (Lee et al., 2007, 2006a,b). This work
is notable in that it compares DRAGON/DIF3D to continuous en-
ergy MCNP. This work shows the difficulty and necessity of using
surface-dependent discontinuity factors (DFs). Without surface-
dependent DFs, eigenvalue errors of above 1000 pcm and maxi-
mum assembly power errors of 5–12% are reported for (7-block)
mini cores with either a single rodded reflector block or a single
rodded fuel block. When surface-dependent DFs are introduced,
eigenvalue errors are reduced to around 600 pcm and maximum
assembly power errors are reduced to 1–3%. The surface-depen-
dent DFs are generated using two different methods, but each
method involves the transport theory solution of (7 block) mini
core problems. This type of computation is not practical for routine
reactor design calculations. In whole core VHTR problems the
eigenvalue errors can be over 600 pcm with maximum assembly
power errors of 5–12% near control rods even with the use of sur-
face-dependent DFs.

1.2. Methods for whole-core transport theory in hexagonal geometry

It is clear that diffusion theory alone is not sufficient to handle
VHTRs with high accuracy, especially in the vicinity of control rods.
Whole-core transport theory, however, can provide good results
for VHTRs. Stochastic methods, such as MCNP (Brown et al.,
2002), can solve the continuous energy transport equation with
high geometric accuracy even for complex and irregular geome-
tries. The disadvantage of such methods is that the results are sub-
ject to statistical uncertainty. The cost of increased precision is
increased computational effort, and this tradeoff is governed by
the central limit theorem. For routine reactor design calculations,

this cost is prohibitively high. For example, the 2D whole-core ref-
erence solutions in section IV of this paper were determined with
MCNP5, and each required between 3 and 6 h running in parallel
across 12 compute nodes (a total of 96 CPU cores).

Unlike stochastic methods, deterministic transport methods do
not suffer from limited statistical precision. Deterministic trans-
port methods are instead limited by discretization error, which
can be reduced by refining the computational mesh (in space,
energy, and angle) along with a corresponding increase in
computational resources. One such multigroup deterministic
transport method is DeCART. DeCART is notable among determin-
istic transport methods for its ability to simulate whole-core
problems without homogenization (Cho et al., 2008). For 2D and
3D whole-core prismatic VHTR problems, DeCART’s agreement
with continuous energy MCNP is typically within 200–500 pcm
for multiplication factor and within 4–5% for block-averaged
power (Cho et al., 2007; Lee and Yang, 2011; Lee et al., 2010).
Unfortunately, no timing information is provided for most of these
results. However, one of the references indicates that it takes
about 5 h to solve a 2D VHTR problem on a single CPU (Cho
et al., 2007). In terms of computational resources, this is an
improvement over stochastic methods, but this improvement
comes at the price of accuracy.

For the design and analysis of prismatic gas-cooled reactors like
VHTR, a method that is both fast and accurate is required. For this
reason, a hybrid stochastic–deterministic transport theory called
COMET (for Coarse Mesh Transport) has been extended to hexago-
nal geometry. COMET is based on the incident flux response expan-
sion (Zhang and Rahnema, 2012) and was originally developed for
fully-heterogeneous, whole-core transport theory in LWRs (Ilas
and Rahnema, 2003; Mosher and Rahnema, 2006). The method
has been since shown to work for Heavy Water Reactors (HWRs)
(Zhang and Rahnema, 2012) and for prismatic gas-cooled reactors
(Connolly et al., 2011, 2012; Connolly and Rahnema, 2012) as well.
The COMET method has been compared with multigroup MCNP
using the same 2D HTTR benchmark analyzed in section IV of this
paper. COMET was shown to be accurate to within 30 pcm in
eigenvalue and within 1% in pin power with calculation times on
the order of minutes. While this is much faster than either Monte
Carlo or fine mesh stochastic methods, it is still desirable to use
methods that have on-the-fly speed such as diffusion theory,
which can arrive at whole-core solutions in seconds.

1.3. The new method

We introduce a method that uses diffusion theory where it is
valid while using a transport theory method elsewhere. The moti-
vation is to create a coupled method that is competitive with trans-
port theory for accuracy and competitive with diffusion theory for
speed.

The goal of this work is to extend the incident flux response
expansion transport theory method developed by Zhang and Rah-
nema (2012) so that it is suitable for coupling to a diffusion theory
method in hexagonal geometry. The remainder of this paper is or-
ganized as follows. In Section 2 we present the method’s underly-
ing theory; in Section 3 we present the details of the method’s
implementation including a new angular expansion basis; and in
Section 4, we demonstrate the method by solving 2D HTTR bench-
mark problems using the incident flux response expansion as a
standalone method.

2. Theory

Broadly, we seek the solution (eigenvalue k and eigenfunction
w, u) to the steady-state coupled transport–diffusion equations
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