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a b s t r a c t

In gamma-ray spectroscopy, a number of neutrons are emitted from the nuclei together with the gamma-
rays. These neutrons influence gamma-ray spectra. An obvious method for discrimination between neu-
trons and gamma-rays is based on the time-of-flight (tof) technique. In this work, the tof distributions of
gamma-rays and neutrons were obtained both experimentally and by using artificial neural networks
(ANNs). It was shown that, ANN can correctly classify gamma-ray and neutron events. Also, for highly
nonlinear detector response for tof, we have constructed consistent empirical physical formulas (EPFs)
by appropriate ANNs. These ANN–EPFs can be used to derive further physical functions which could be
relevant to discrimination between gamma-rays and neutrons.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Nuclear spectroscopy closing to the neutron and proton drip-
lines is a challenging topic in theoretical and experimental nuclear
structure physics. In order to investigate exotic nuclei lying in these
regions, heavy-ion fusion–evaporation (HIFE) reactions, which are
widely used type of nuclear reactions, are invaluable tool. In these
types of reactions, two nuclei fuse to form a compound nucleus.
The compound nucleus decays by evaporating numerous light par-
ticles, principally neutrons, protons and alphas. Contrary to the
charged ones, neutrons can travel long distances and interact inside
the detectors together with the gamma-rays. These neutrons cause
unwanted background in the gamma-ray spectra.

The issue is accurately identification of neutron interactions in
the detectors and determination of individual gamma-rays belong-
ing to the residual nuclei, especially produced with very low inten-
sities. In order to thoroughly overcome detecting the low signals,
high-resolution HPGe gamma-ray detectors have been developed
(Vetter, 2001; Akkoyun et al., 2012). In the germanium detectors,
used in this study, the main energy deposition mechanisms of neu-
trons following HIFE reactions are elastic and inelastic scatterings.
Inelastic scatterings of neutrons are more complex because of exci-
tation of the recoiling germanium nuclei. In order to separate neu-
trons from gamma-rays, time-of-flight (tof) method is an obvious
way. This possibility was previously examined in the simulations
of the high-resolution HPGe gamma-ray detectors (Ljungvall and
Nyberg, 2005; Senyigit et al., 2010).

The physical phenomena involved in tof distributions are char-
acteristically highly nonlinear. Therefore, in many cases it may be
difficult to construct explicit form of empirical physical formulas
(EPFs) for detector response functions. Then, by various appropri-
ate operations of mathematical analysis, derivation of potentially
useful highly nonlinear physical functions for tof distributions is
of utmost interest. Compatibly our previous theoretical treatment
(Yıldız, 2005), appropriate EPFs for germanium detector nonlinear
responses can be built by using artificial neural networks (ANNs).
In this work, we gave a way to obtain tof distributions of gam-
ma-rays and neutrons by ANNs. Using ANN method can help clas-
sification of gamma-ray and neutron events. We have also
constructed consistent EPFs by convenient ANNs.

Recently, ANNs have been successfully used in many fields
including discrimination of neutrons and gamma-rays (Cao et al.,
1998; Esposito et al., 2004; Liu et al., 2009; Yildiz and Akkoyun,
2013). In this paper, we particularly aim to construct explicit
mathematical functional form of ANN–EPFs for nonlinear detector
responses for tof distributions. While the detector responses were
intrinsically highly nonlinear, even so train set ANN–EPFs success-
fully fitted these responses. Furthermore, test set ANN–EPFs consis-
tently predicted the responses. That is, the physical laws graved in
the detector responses data were extracted by the ANN–EPFs.

2. Monte Carlo simulations of HPGe detectors

In the simulations, considering high-resolution gamma-ray
detectors (Vetter, 2001; Akkoyun et al., 2012), an HPGe detector
is used for measurements of the neutrons and gamma-rays. The
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diameter and thickness of the cylindrical planar detector are 7 and
7.5 cm, respectively. The distance between gamma-ray/neutron
source and the front surface of the detector was 25 cm. For the sim-
ulations of the detector and the interactions of gamma-rays and
neutrons inside the detector, Geant4.9.2 Monte Carlo simulation
program (Agostinelli et al., 2003) was used. Neutrons are detected
indirectly in the detector via predominantly elastic and inelastic
scattering from the germanium nuclei.

In order to obtain tof distributions of gamma-rays or/and neu-
trons, gamma-rays and neutrons were sent to the detectors from
the source position, together and one by one. The energies of the
incident neutrons with 4 multiplicities were sampled from a distri-
bution (at 0–15 MeV interval) which is obtained from a typical
HIFE reaction. The flight times are 58 ns for 100 keV neutrons
and 4.5 ns for 15 MeV neutrons to the front face of the detectors.
The discrete energies of the gamma-ray cascade with multiplicity
30 are in 1–3 MeV intervals. The flight time of the gamma-rays is
about 1 ns. In Fig. 1, tof distributions of gamma-rays and neutrons
were given. This study aims to give an alternative way to introduce
tof distributions of gamma-rays and neutrons. Using this informa-
tion can help classification of gamma-ray and neutron events by
using artificial neural network method.

3. Artificial neural networks

3.1. ANN fundamentals

Artificial neural networks (ANNs) are known to be very power-
ful multivariate tools that are used when standard techniques fail
to properly take account of the correlation between these vari-
ables. The main task of the ANNs is to give outputs in consequence
of the computation of the inputs. ANNs are mathematical models
that mimic the human brain. They consist of several processing
units called neurons which have adaptive synaptic weights
(Haykin, 1999). ANNs are also effective tools for pattern recogni-
tion. The classical ANN consists of three layers: input, hidden and
output (Fig. 2). The number of hidden layers can differ, but a single
hidden layer is enough for efficient nonlinear function approxima-
tion (Hornik et al., 1989). In this study, one input layer with one
neuron, one hidden layer with many (h) neuron and one output
layer with one neuron (1–h–1) ANN topology was used for accu-
rately and reliably prediction of tof distributions of the gamma-
rays and neutrons. Besides, there are also biases (whose signals
are equal to one) connected to the hidden and output layer neu-
rons. The aim of these biases whose signal is equal to one is to scale

the input to a useful range. Analyses were performed for different
hidden neuron numbers, h = 6, 15 and 25. So, the total numbers of
adjustable weights/bias were 19, 46 and 76.

The neuron in the input layer collects the data from environ-
ment and transmits via weighted connections to the neurons of
hidden layer which is needed to approximate any nonlinear func-
tion. The hidden neuron activation function can be theoretically
any well-behaved nonlinear function. The type of activation func-
tion was chosen as hyperbolic tangent for hidden layer (Eq. (1)):

tan h ¼ ðe
x � e�xÞ
ðex þ e�xÞ ð1Þ

Instead of Eq. (1), any other suitable sigmoidal function could
also be used. The output layer neuron returns the signal after the
analysis. Note that, an input layer with single neuron is firmly
equivalent to one neuron ANN with an appropriate activation func-
tion. As far as the activation function is analytical, the output is
also an analytical function of the input.

The ANN train and test datasets used in this work were pro-
duced by Geant4 simulations which are mentioned in Section 2.
At the first step of the simulations, gamma-ray experimental data
(dataset-I) and neutron experimental data (dataset-II) were gener-
ated separately mainly for training stage. In the last simulation, the
data (dataset-III) including both gamma-rays and neutrons to-
gether were generated for application of discrimination between
gamma-rays and neutrons.

An ANN software NeuroSolutions v6.02 was also used. The ANN
input was tof values of the gamma rays and/or the neutrons and
the desired outputs were detector responses for tof. During all
ANN processes, the data was normalized into [�1,1] interval. In
the training step, dataset-I and dataset-II were used separately.
For all ANN processing case, dataset-I and II were divided into
three separate sets. One of this is for the training stage (about
50% of all data), 20% is for validation and the rest is for the test
stage. In the training stage, a back-propagation algorithm with
Levenberg–Marquardt for the training of the ANN was used. By
convenient modifications, ANN modifies its weights until an
acceptable error level between predicted and desired outputs is at-
tained. The error function which measures the difference between
outputs was mean square error (MSE) as given in Eq. (2):

Fig. 1. Time-of-flight (tof) distributions of gamma-rays and neutrons in HPGe
detectors.

Fig. 2. Fully connected one input-one hidden-one output layer ANN (1–6–1). xi and
yi are input and output vector components respectively. Circles are neurons and
lines indicate adaptable synaptic weights. wi

jk: weight vector component, where i is
a layer index, jk weight component from the jth neuron of ith layer and to kth
neuron of (i + 1)th layer. There are also bias units connected to the neurons in the
hidden and output layers.
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