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a b s t r a c t

In this paper we extend the concept of Dugdale crack model and Yoffe model to propose a moving Dug-
dale interfacial crack model, and the interfacial crack between dissimilar piezoelectric materials under
anti-plane electro-mechanical loading is investigated considering the electro-mechanical nonlinearity.
It is assumed that the constant moving crack is electrically permeable and the length of the crack keeps
constant. Fourier transform is applied to reduce the mixed boundary value problem of the crack to dual
integral equations, which are solved exactly. The explicit expression of the yield zone size is derived and
the crack sliding displacement has been explicitly obtained. The results show that both the stress and
electric field in the cracked piezoelectric material are of finite value and the crack sliding displacement
is dependent on the loading, material properties and crack moving velocity. The static interfacial crack
problem can be recovered when the moving velocity is zero.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Because of the electromechanical coupling effect, piezoelectric
materials have been widely used as transducers, sensors and actu-
ators. Due to the brittleness and low fracture toughness of piezo-
electric materials, fracture analysis of piezoelectric materials has
drawn considerable attentions. Structural reliability concerns of
electromechanical devices call for a better understanding of the
mechanisms of piezoelectric fracture. Important results about frac-
ture in piezoelectric solids based on linear electro-elasticity have
been derived by Parton [1], Suo et al. [2], and many others. Theo-
retical investigation of crack propagation in elastic materials began
with Yoffe’s [3] analysis of the near-tip field of a constant moving
crack, and some of the subsequent research works were carried out
by Craggs [4], Freund [5], Yang et al. [6], among others. Considering
the coupling effect of mechanical and electrical fields, the moving
crack problem in piezoelectric materials has been studied by many
researchers. The problem of a Griffith crack moving along the inter-
face of two dissimilar piezoelectric materials was solved by Chen
et al. [7] and Li et al. [8] using the integral transform technique,
which showed that the stress distribution varies with the crack
moving velocity while the stress intensity is independent of the
velocity. A moving conducting crack at the interface of two

dissimilar piezoelectric materials was investigated by Wang et al.
[9]. The problems of moving crack in functionally graded piezo-
electric materials under anti-plane shear and in-plane electric
loadings have been investigated by Jin and Zhong [10], Hu and
Zhong [11]. Soh et al. [12] investigated the general plane problem
of constant moving crack in anisotropic piezoelectric materials and
concluded that the crack velocity affects the crack tip fields and the
propagation orientation of the moving crack. Hu and Chen [13]
investigated the crack kinking phenomena in a piezoelectric strip
under impact loading and studied the effect of geometric size
and loading on the crack kinking. However, analyses based on
the theory of linear electro-elasticity cannot explain some
discrepancies between theories and experiments [14]. The linear
electro-elastic fracture mechanics predicts that the stress and
electric displacement at the tip of a Griffith crack is singular, which
is physically unrealistic.

A moving Dugdale crack model has been proposed by Fan [15]
who verified that dynamic crack opening, sliding and tearing dis-
placements are significant for describing the dynamic process of
materials with nonlinear behavior. Various nonlinear models have
been suggested to study the crack problems in piezoelectric mate-
rial. Gao et al. [16] generalized the essential idea of Dugdale [17]
and proposed a strip yield saturation model of electrical yielding
by assuming the electrical polarization is saturated in a line seg-
ment in front of the crack tips. Narita and Shindo [18] considered
a mode III fatigue crack in a piezoelectric ceramic strip based on
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the Dugdale’s model of the plastic zone. A strip dielectric break-
down model has been proposed by Zhang et al. [19] to analyze
an electrically impermeable crack in piezoelectric medium. Shen
et al. [20] developed a strip electric saturation and mechanical
yielding model for a mode III interfacial moving crack between fer-
roelectric-plastic bimaterials. An analytical characterization of
electromechanical nonlinear effects in the fields around the inter-
facial crack in piezoelectric material compound has been studied
by introducing a pre-fracture zone model [21]. A moving polariza-
tion saturation model was proposed by Chen et al. to study the
plane problem of a Yoffe-type crack moving in ferroelectric consid-
ering electric saturation [22].

In this paper, a Dugdale type interfacial crack between dissim-
ilar piezoelectric materials under anti-plane shear and in-plane
electrical loadings is studied. Fourier transform is employed to
reduce the mixed boundary value problem of the electrically per-
meable crack to solving a pair of dual integral equations and the
exact solution is obtained. The relation between the yield zone size
and the applied loading is derived and the crack sliding displace-
ment has been obtained.

2. Problem statement and basic equations

A way of removing the crack tip singularity was proposed in
Dugdale [17], and according to this model, the assumption of a
strip yield zone ahead of the physical crack tip is introduced; the
plastic yielding is handled in an approximate manner by placing
constraining yield level stress along a slit ahead of the crack tip
in a manner which ensures bounded and continuous stresses at
the edge of the plastic zone. Consider a Dugdale type interfacial
crack of length 2c between dissimilar piezoelectric materials in a
rectangular coordinate system ðX;Y; ZÞ under anti-plane mechani-
cal and in-plane electric loading at infinity, as shown in Fig. 1. The
upper and lower part piezoelectric half-spaces are denoted by I and
II, respectively. A finite shear yield stress rY is prescribed along the
yield zones described by c 6 jxj 6 a, and the length of the yield
zone can be defined as b ¼ a� c.

As in Yoffe’s model [3,15], it is assumed that the interfacial crack
is moving along the interface with a constant velocity v and the crack
length remains unchanged. It seems that the assumption of constant
length of the moving crack may not be realistic, since it demands the
crack propagate at one end and healed at the other. However, the
solution based on the Yoffe model [3] shows most of the features
pertinent to dynamically moving crack in general, particularly the
stress–strain field in the vicinity of a moving crack edge, and gives

an explanation of limiting speeds and crack branching [23]. A set
of moving Cartesian coordinates ðx; y; zÞ is attached to the crack cen-
ter for reference purpose. The piezoelectric materials are poled in
the direction of Z–axis, which guarantees transverse isotropy of
the piezoelectricity. Symmetry arguments are used to allow consid-
eration of only the half space ðjxjP 0Þ with appropriate boundary
conditions along the coordinate axes.

Anti-plane displacement and in-plane electric field are assumed
such that the constitutive equations can be written as

rðiÞzj ¼ CðiÞ44wðiÞ;j þ eðiÞ15/
ðiÞ
;j

DðiÞj ¼ eðiÞ15wðiÞ;j � kðiÞ11/
ðiÞ
;j

ð1Þ

where rðiÞzj ðj ¼ X;Y; i ¼ 1;2Þ are the shear stress components, wðiÞ is

the z-component of displacement, DðiÞj are the components of elec-

tric displacement, /ðiÞ is the electric potential, CðiÞ44 is the elastic stiff-

ness constant measured in a constant electric field, eðiÞ15 is the

piezoelectric constant, kðiÞ11 is the dielectric constant measured at a
constant strain, and a comma implies partial differentiation with
respect to the coordinates. The superscript i ¼ 1;2 denotes the
quantities in the upper and lower piezoelectric spaces, respectively.

In the absence of body forces and electric charge density, the
governing equations are

CðiÞ44r2wðiÞ þ eðiÞ15r2/ðiÞ ¼ qðiÞ
@2wðiÞ

@t2

eðiÞ15r2wðiÞ � kðiÞ11r2/ðiÞ ¼ 0
ð2Þ

where r2 ¼ @2=@X2 þ @2=@Y2 is the two-dimensional Laplace oper-
ator in the variables X and Y;qðiÞ is the mass density of the piezo-
electric material. The governing equations can be further
simplified and expressed as

r2wðiÞ ¼ 1

V ðiÞ
2

C

@2wðiÞ

@t2 ð3-1Þ

r2/ðiÞ ¼ eðiÞ15

kðiÞ11

r2wðiÞ ð3-2Þ

where

V ðiÞC ¼

ffiffiffiffiffiffiffi
lðiÞ
qðiÞ

s
; lðiÞ ¼ CðiÞ44 þ

eðiÞ
2

15

kðiÞ11

; ði ¼ 1;2Þ ð4Þ

and V ðiÞC ði ¼ 1;2Þ are the piezoelectric shear wave speeds in the
upper and lower half-spaces, respectively, and lðiÞ ði ¼ 1;2Þ are
the piezoelectric stiffened elastic constants.

For the problem of a crack moving with a constant velocity
along the X-direction, it is convenient to introduce a Galilean trans-
formation as

x ¼ X � vt; y ¼ Y ð5Þ

and one can obtain @=@X ¼ @=@x; @=@t ¼ �v@=@x; @=@Y ¼ @=@y.
Thus, in the moving coordinate system, Eqs. (3) become indepen-
dent of the time variable t, and may be written as

aðiÞ
2 @2wðiÞ

@x2 þ
@2wðiÞ

@y2 ¼ 0 ð6-1Þ

@2

@x2 þ
@2

@y2

 !
/ðiÞ � eðiÞ15

kðiÞ11

wðiÞ
" #

¼ 0 ð6-2Þ

where

aðiÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

V ðiÞ
2

C

vuut ; ði ¼ 1;2Þ ð7Þ
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Fig. 1. A Dugdale interfacial crack moving along the interface between dissimilar
piezoelectric materials.
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