Accepted Manuscript

Energy modeling using an effective latent variable based functional link learning machine

Xiao-Han Zhang, Qun-Xiong Zhu, Yan-Lin He, Yuan Xu

PII:	S0360-5442(18)31641-4

DOI: 10.1016/j.energy.2018.08.105

Reference: EGY 13581

To appear in: Energy

Received Date: 03 January 2018

Accepted Date: 13 August 2018

Please cite this article as: Xiao-Han Zhang, Qun-Xiong Zhu, Yan-Lin He, Yuan Xu, Energy modeling using an effective latent variable based functional link learning machine, *Energy* (2018), doi: 10.1016/j.energy.2018.08.105

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Energy modeling using an effective latent variable based functional
2	link learning machine
3	Xiao-Han Zhang ^{\dagger} ; Qun-Xiong Zhu ^{\dagger} ; Yan-Lin He [*] ; Yuan Xu [*]
4	College of Information Science & Technology, Beijing University of Chemical Technology, Beijing, 100029, China;
5	Engineering Research Center of Intelligent PSE, Ministry of Education of China, Beijing 100029, China;
6	[†] These authors contributed to the work equally and should be regarded as co-first authors.
7	*Corresponding author: Tel.: +86-10-64426960; Fax: +86-10-64437805;
8	Emails: <u>heyl@mail.buct.edu.cn</u> (Y.L. He [*]); <u>xuyuan@mail.buct.edu.cn</u> (Y. Xu [*])
9	ABSTRAT: With the increasing scale of modern petrochemical industries, energy modeling
10	plays a more and more important role in energy-saving. However, it becomes more and more
11	difficult to build accurate energy models due to the complicated characteristics of high
12	nonlinearity, high dimension and strong coupling of modeling data. In order to tackle this
13	problem, a novel latent variable based efficient functional link learning machine is proposed
14	in this paper. In the proposed method, there are three salient features: first, a nonlinear
15	function expansion block is used to extend the space of energy modeling data to highly
16	nonlinear space for effectively solving the high nonlinear problem of energy modeling data;
17	second, principal components based latent variables are extracted from the expanded space
18	for removing redundant information; finally, an extreme learning algorithm based on
19	generalized inverse is utilized to train the proposed model for achieving fast learning speed.
20	To validate the performance of the proposed model, a case study of developing an energy
21	model for a Purified Terephthalic Acid production process is carried out. Simulation results
22	show that the proposed model can achieve not only extreme learning speed, but also
23	acceptable accuracy.

Download English Version:

https://daneshyari.com/en/article/8070809

Download Persian Version:

https://daneshyari.com/article/8070809

Daneshyari.com